
RETROSPECTIVE:

How to Read Floating Point Numbers Accurately

William D Clinger
College of Computer and Information Science

Northeastern University
Boston, MA 02115, USA
will@ccs.neu.edu

ABSTRACT
Converting decimal scientific notation into binary floating point is
nontrivial, but this conversion can be performed with the best pos-
sible accuracy without sacrificing efficiency.

1. INTRODUCTION
Having learned to count on their fingers, humans like to express
real numbers in decimal scientific notation. Most computers are
designed to calculate using numbers that are expressed in IEEE-
standard binary floating-point notation.

Although every binary floating-point number can be expressed
in decimal scientific notation by using enough digits, most num-
bers that are expressible in decimal scientific notation cannot be
expressed in binary floating-point. For example, 0.1 is not express-
ible in binary floating-point. The value of the closest IEEE double
precision floating-point approximation to 0.1 is

� 1000000000000000055511151231257827021181583404541015625

A decimal-to-binary conversion routine that always delivers the
closest floating-point approximation to its input, and breaks ties
according to the current rounding mode (typically round-to-even),
is said to perform correct rounding.

My PLDI paper gave the first description of an efficient algo-
rithm for correctly rounded decimal-to-binary conversions [3]. Sec-
tion 10 of that paper describes its motivation and its relationship to
the paper by Steele and White in that PLDI and this collection [16].

IEEE-conforming decimal-to-binary conversions have been al-
lowed to lose almost twice as much accuracy as would be lost by
correct rounding [9]. When my PLDI paper was published, almost
all implementations did lose this much accuracy at times. This
source of inaccuracy could conceivably affect the result of a nu-
merically unstable computation. More importantly, this loss of ac-
curacy has made decimal scientific notation less attractive for ex-
changing numerical data between different systems [15]:

Unfortunately, the IEEE standard does not guarantee
that the same program will deliver identical results on
all conforming systems. Most programs will actually
produce different results on different systems for a va-
riety of reasons. For one, most programs involve the
conversion of numbers between decimal and binary
formats, and the IEEE standard doesn’t completely spec-
ify the accuracy with which such conversions must be
performed.

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 ...$5.00.

In consequence of the research described below, most computer
systems now perform correct rounding, and several language stan-
dards now require correct rounding of decimal-to-binary conver-
sions. The committee that is revising the IEEE standard for binary
floating point arithmetic is considering a proposal to require correct
rounding.

2. IMPLEMENTATIONS
Within months of PLDI ’90, David Gay improved upon my Al-
gorithm Bellerophon by replacing the extended precision floating
point calculation by a standard-precision floating point calculation
combined with a high-precision integer calculation [5]. Gay also
noted an easy case that I had missed, simplified the algorithm by
using a uniform error bound for all hard cases, and reduced the
table sizes.

Gay also improved upon Steele and White’s Dragon algorithm.
He implemented both improved algorithms in C, and made his code
available for anyone to use [6]. Gay’s code was slower than previ-
ous conversion routines on hard cases (for which the previous rou-
tines were often less accurate), but was so much faster on typical
cases that Gay’s code was faster overall.

Gay’s code was also more robust and more accurate. These ad-
vantages were demonstrated by David Hough’s Testbase program,
and were documented in a manuscript written by Vern Paxson un-
der the direction of William Kahan [8, 14]. Most major workstation
vendors soon incorporated Gay’s code into their standard libraries.

The implementation of correctly rounded decimal-to-binary con-
version for the IBM S/390 apparently began with my algorithm in-
stead of Gay’s code [1].

Meanwhile I had implemented correctly rounded conversions
in Scheme for MacScheme, which ran on the Apple Macintosh,
and made my code available to other implementors of Scheme and
Common Lisp [13]. Robert Burger and Kent Dybvig implemented
correct rounding for Chez Scheme, and made their code available
to other implementors [2]. Most major implementations of Scheme
now provide correctly rounded conversions.

3. STANDARDS
The Scheme standards cite the PLDI ’90 papers, and require nu-
meric conversion routines to preserve the value of a number across
a round-trip of output followed by input, but do not actually require
correct rounding [10, 11]. Scheme also requires the output routine,
for each individual number, to generate the minimum number of
digits that allows this round-trip requirement to be satisfied. This
makes Scheme’s round-trip requirement more stringent than the
round-trip requirement of the IEEE floating-point standard, where
the number of digits that are needed to avoid loss of accuracy dur-
ing a round-trip is independent of the number. Hence implementa-

tions of Scheme cannot just rely on IEEE-conforming conversion
routines. The best way to satisfy Scheme’s i/o requirements is to
provide correctly rounded conversions.

It appears that Java was the first programming language to re-
quire correctly rounded decimal-to-binary conversions [17]. The
specification of java.lang.Double.valueOf(String), for
example, says that a syntactically correct input string

is regarded as representing an exact decimal value in
the usual “computerized scientific notation”; this ex-
act decimal value is then conceptually converted to an
“infinitely precise” binary value that is then rounded to
type double by the usual round-to-nearest rule of IEEE
754 floating-point arithmetic.

XML Schema, which was approved as a W3C Recommenda-
tion on 2 May 2001, requires correct rounding of decimal-to-binary
conversions, citing both my paper and Gay’s [3, 5, 19].

The committee that is revising the IEEE 754 standard for bi-
nary floating-point arithmetic has already voted to encourage cor-
rect rounding of all binary-decimal conversions. A proposal that
would actually require correct rounding has been written and will
soon be considered by the committee [18].

4. CORRECTION
In section 9 of my PLDI paper, I reported that “some compilers do
not implement IEEE arithmetic correctly.” This was an overstate-
ment, as the IEEE 754 standard concerns itself primarily with the
low-level operations as they would be implemented in hardware or
in library routines, and does not specify many of the language-level
and compiler-level details that determine the behavior of floating-
point arithmetic as seen by most programmers and users. In par-
ticular, “the IEEE standard requires that each result be rounded
correctly to the precision of the destination into which it will be
placed, but the standard does not require that the precision of that
destination be determined by a user’s program” [15].

5. ACKNOWLEDGEMENTS
I have relied on BibTeX entries that were collected or written by
Guy Steele and Nelson Beebe for the committee that is revising the
IEEE 754 standard [18].

REFERENCES
[1] P. H. Abbott, D. G. Brush, C. W. Clark III, C. J. Crone, J. R.

Ehrman, G. W. Ewart, C. A. Goodrich, M. Hack, J. S.
Kapernick, B. J. Minchau, W. C. Shepard, R. M. Smith, Sr.,
R. Tallman, S. Walkowiak, A. Watanabe, and W. R. White.
Architecture and software support in IBM S/390 Parallel
Enterprise Servers for IEEE floating-point arithmetic. IBM
Journal of Research and Development, 43(5/6):723–760,
1999. At www.research.ibm.com/journal/rd/,
see 435/abbott.html.

[2] Robert G. Burger and R. Kent Dybvig. Printing floating-point
numbers quickly and accurately. ACM SIGPLAN Notices,
31(5):108–116, May 1996. (Proceedings of PLDI ’96).

[3] William D. Clinger. How to read floating point numbers
accurately. ACM SIGPLAN Notices, 25(6):92–101, June
1990. (Proceedings of PLDI ’90).

[4] W. H. J. Feijen, A. J. M. van Gasteren, D. Gries, and
J. Misra, editors. Beauty is our business: a birthday salute to
Edsger W. Dijkstra. Springer-Verlag, Berlin, Germany /
Heidelberg, Germany / London, UK / etc., 1990.

[5] David Gay. Correctly rounded binary-decimal and
decimal-binary conversions. Technical Report 90-10, AT&T
Bell Laboratories, November 1990. At
http://www.ampl.com/REFS/.

[6] David Gay. dtoa.c. At
http://www.netlib.org/fp/, November 1990.

[7] David Gries. Binary to decimal, one more time. In Feijen
et al. [4], chapter 16, pages 141–148. This paper presents an
alternate proof of Knuth’s algorithm [12] for conversion
between decimal and fixed-point binary numbers.

[8] David Hough and Vern Paxson. Testbase. At
http://www.netlib.org/fp/, 1991.

[9] IEEE Computer Society, New York. IEEE Standard for
Binary Floating-Point Arithmetic, 1985. IEEE Standard
754-1985.

[10] IEEE Computer Society, New York. IEEE Standard for the
Scheme Programming Language, 1991. IEEE Standard
1178-1990.

[11] Richard Kelsey, William D. Clinger, and Jonathan Rees.
Revised5 report on the algorithmic language Scheme.
Journal of Higher-Order and Symbolic Computation,
11(1):7–105, 1998. Also appears in ACM SIGPLAN Notices
33(9), September 1998.

[12] Donald E. Knuth. A simple program whose proof isn’t. In
Feijen et al. [4], chapter 27, pages 233–242. This paper
discusses the algorithm used in TEX for converting between
decimal and scaled fixed-point binary values, and for
guaranteeing a minimum number of digits in the decimal
representation. See also [3] for decimal to binary conversion,
[16] for binary to decimal conversion, and [7] for an alternate
proof of Knuth’s algorithm.

[13] Lightship Software. MacScheme manual and software, 1990.
[14] Vern Paxson and William Kahan. A program for testing

IEEE decimal-binary conversion. At ftp.ee.lbl.gov,
see testbase*, May 1991.

[15] Doug Priest. Differences among IEEE 754 implementations.
At http://www.validlab.com/. This was written as
Appendix D for David Goldberg’s What Every Computer
Scientist Should Know About Floating-Point Arithmetic,
ACM Computing Surveys, March 1991.

[16] Guy L. Steele Jr. and Jon L. White. How to print
floating-point numbers accurately. ACM SIGPLAN Notices,
25(6):112–126, June 1990. (Proceedings of PLDI ’90).

[17] Sun Microsystems. Java 2 Platform, Standard Edition,
v1.2.2, API Specification, 1999.

[18] 754R working group. Some proposals for revising
ANSI/IEEE Std 754-1985. At
http://754r.ucbtest.org/.

[19] World-Wide Web Consortium. XML Schema Part 2:
Datatypes, May 2001. At
http://www.w3.org/TR/xmlschema-2/.

