

Generational Garbage Collection

and the Radioactive Decay Model

William D Clinger and Lars T Hansen

Northeastern University

{will,lth}@ccs.neu.edu

Abstract

If a fixed exponentially decreasing probability distribu-
tion function is used to model every object’s lifetime,
then the age of an object gives no information about
its future life expectancy. This radioactive decay model
implies there can be no rational basis for deciding which
live objects should be promoted to another generation.
Yet there remains a rational basis for deciding how
many objects to promote, when to collect garbage, and
which generations to collect.

Analysis of the model leads to a new kind of gen-
erational garbage collector whose effectiveness does not
depend upon heuristics that predict which objects will
live longer than others.

This result provides insight into the computational
advantages of generational garbage collection, with im-
plications for the management of objects whose life ex-
pectancies are difficult to predict.

1 Introduction

The computational advantages of generational garbage
collection over non-generational collection are generally
attributed to heuristic prediction of object lifetimes and
to improved caching and paging behavior [5, 39]. This
hypothesis can be tested by considering a uniform mem-
ory system and a model of object lifetimes for which no
heuristic predictor can do better or worse than chance.

The radioactive decay model is a model of object
lifetimes that defeats all heuristics that attempt to pre-
dict which objects will live longer than others, including
heuristics that are tuned to a specific model and its pa-
rameters. This model has the remarkable property that
the age of a live object, together with the time at which

To appear in the ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, June

1997, in Las Vegas, Nevada.

the object was allocated, gives absolutely no informa-
tion about the probability that the object will survive
to any future time. The model is also simple and easy
to analyze.

This paper describes and analyzes a new kind of
generational garbage collector, the non-predictive col-
lectors. A calculation shows that non-predictive collec-
tors can outperform non-generational collectors for the
radioactive decay model. This result proves that gener-
ational garbage collection has an advantage in computa-
tional complexity that cannot be attributed to heuristic
prediction of object lifetimes, to locality effects, or to
the benefit of retaining a large part of its state from one
collection to the next.

Although the radioactive decay model does not de-
scribe the overall behavior of objects in most real pro-
grams, it may be a useful model for long-lived objects.
Experimental studies have thus far found few regulari-
ties in the behavior of long-lived objects that could be
used to predict which of them are likely to live longer
than others [24, 33, 32, 39]. A total absence of such
information is the defining characteristic of the radioac-
tive decay model.

Non-predictive collectors appear suitable for manag-
ing the oldest generations of an otherwise conventional
multi-generation garbage collector. We have designed a
prototype of such a collector for the Larceny implemen-
tation of Scheme [14, 21, 27]. This prototype began to
work as this paper went to press. On most programs
the new collector performs the same as the generational
collector it replaces, but we expect the new collector to
improve the performance of some programs that present
a challenge to our conventional generational collector.

Our main conclusion is that research effort directed
toward heuristic prediction of object lifetimes is slightly
misplaced. What really matters is the heuristic selec-
tion of generations to collect. These two problems are
not equivalent.

2 The radioactive decay model

In the radioactive decay model, a single probability dis-
tribution function describes the life expectancy of every
object. There is but one parameter of the model, the
half-life h. For every object that is live at time t0, the
probability that the object will still be alive at time
t0 + t is 2−t/h. The probability that the object will be
dead at that time is 1− 2−t/h. The derivative of this is
the probability density function

Ph(t) =
log 2

h
2−t/h

The radioactive decay model is characterized by two as-
sumptions. The first assumption ensures that the age
of a live object can never provide any clue to its fu-
ture prospects. The second assumption ensures that no
other clues are available either.

Assumption 1 There exists h > 0 such that, for each
live object o, the life expectancy of o is described by
Ph(t).

Assumption 2 Live objects have no other distinguish-
ing characteristics that might be exploited by a genera-
tional garbage collector.

With these assumptions, there is no rational basis for
any policy that could be used by a generational garbage
collector to decide which live objects should be kept in
which generation. The collector might as well make all
such decisions randomly.

If the time t is measured by the number of objects
that have been allocated, then the radioactive decay
model implies that an equilibrium will be approached
after several half-lives of time have passed. At equilib-
rium one object can be expected to die per unit time.
The expected number n of live objects at equilibrium is
therefore related to the half-life h by 1 = n(1− 2−1/h).

Let r = 2−1/h. By L’Hospital’s Rule,

r ≈ 1− log 2

h

for large h [1, 34]. Small values of h imply a small num-
ber of live objects, which makes garbage collection too
easy to be interesting, so this approximation can safely
be used to calculate that the live storage at equilibrium
is

n = 1/(1− r) ≈ h

log 2

.
= 1.4427h (1)

If most objects die young, then there must be few live
objects. The radioactive decay model is useful only as
a model for long-lived objects.

3 Generational garbage collection

Generational garbage collectors work by dividing heap
storage into generations. They have policies that deter-
mine the generation in which a new object will be allo-
cated, when and how to move objects from one genera-
tion to another, and when and how to collect garbage.

There are three distinct properties of generational
collectors that allow them to reduce the overhead of
garbage collection for some programs:

• By limiting the region in which new objects are
allocated, and to a lesser extent by controlling
the regions in which objects reside after alloca-
tion, generational collectors improve the caching
and paging behavior of a program [37].

• By retaining a remembered set of cross-generational
pointers from one collection to the next, and by
maintaining that set in cooperation with the mu-
tator, generational collectors do not have to start
from scratch on every collection [35, 39].

• By collecting a cleverly selected subset of the gen-
erations, generational collectors can reduce the am-
ortized overhead of garbage collection.

A first approximation to the amortized overhead of
garbage collection can be estimated by dividing the
number of objects that have been marked (or copied,
or whatever) by the number of objects that have been
allocated. This is the mark/cons ratio.

A generational collector attempts to lower the mark/
cons ratio by collecting generations that contain a higher
percentage of garbage than the average for all genera-
tions. Such generations require less marking and re-
claim more storage than the average.

Clearly the collector’s choice of generations to col-
lect is critical. If the selected generations actually con-
tain an unusually low percentage of garbage, then the
mark/cons ratio will rise instead of fall.

That is what happens when a conventional gener-
ational garbage collector is used for a program whose
object lifetimes resemble the radioactive decay model.
The collector simply assumes that young objects have
a shorter life expectancy than old objects, and concen-
trates its effort on collecting the generations that con-
tain the most recently allocated objects. In the radioac-
tive decay model, these are the objects that have had
the least amount of time in which to decay, so the gen-
erations in which they reside contain an unusually low
percentage of garbage. For the radioactive decay model,
therefore, a conventional generational collector will per-
form worse than a similar non-generational collector.

This is remarkable because the radioactive decay
model ensures that no heuristic predictor of object life-
times can do worse than chance. Heuristic selection

2

live storage in each step
t step 1 step 2 step 3 step 4 step 5 step 6 step 7
0 0 0 0 0 0 1024 1024

1024 0 0 0 0 1024 512 512
2048 0 0 0 1024 512 256 256
3072 0 0 1024 512 256 128 128
4096 0 1024 512 256 128 64 64
5120 ∗1024 512 256 128 64 32 32

gc 0 0 0 0 0 1024 ∗1024

∗These two steps are exchanged, not collected.

Table 1: Live storage in a non-predictive generational collector.

of generations to collect must therefore be a different
problem from heuristic prediction of object lifetimes.

Furthermore the fact that a poor choice of gener-
ations to collect can cause a generational collector to
perform worse than a non-generational collector for the
radioactive decay model suggests that a better choice
of generations might allow it to perform better.

The main theoretical result of this paper is that not
even the radioactive decay model can prevent a gener-
ational collector from organizing its generations to ob-
tain a lower mark/cons ratio than a non-generational
collector.

4 Non-predictive generational collectors

A non-predictive generational garbage collector does
not attempt to predict the lifetimes of objects. Nei-
ther does it keep track of the ages of objects. It does,
however, keep track of how much allocation has been
performed since an object was allocated or last consid-
ered for collection.

Just as a conventional generational collector can use
a mark/sweep, compacting mark/sweep, or a stop-and-
copy collector to collect its generations, so can a non-
predictive generational collector use any of those basic
algorithms.

This section describes a specific 2-generation non-
predictive collector. This collector divides heap stor-
age into k steps of equal size. Step 1 is considered the
youngest, and step k is the oldest. A dynamic tuning
parameter j ≥ 0 determines how many of these steps
are allocated to the young generation, which consists of
steps 1 through j. The old generation consists of steps
j + 1 through k.

All allocation occurs in the highest-numbered step
that has free space. When it becomes full, the next
highest-numbered step becomes the allocation area, and
so on until step 1 fills. The tuning parameter j de-
termines how many of the youngest steps will not be

collected during the next collection. The collector es-
sentially assumes that all objects in steps 1 through j
are live.

When all steps become full:

• Steps j+1 through k are collected as a single gener-
ation, promoting objects to the highest-numbered
step that contains free space.

• Following collection, steps j+ 1 through k become
the new steps 1 through k− j; the original steps 1
through j become steps k − j + 1 through k.

• Then a new value of the tuning parameter j can be
chosen. For technical reasons described in Section
8, the implementation of this algorithm becomes
simpler if j is always chosen so that steps 1 through
j are empty.

An example of a non-predictive generational collec-
tor at work is shown in Table 1, which assumes j is fixed
at 1. The numbers shown in this table are close to but
nicer than the numbers that would be expected from
the radioactive decay model with a half-life of 1024 and
an inverse load factor of 3.5.

The mark/cons ratio for Table 1 is 1024/5120 =
0.2. For a non-generational mark/sweep collector, the
mark/cons ratio would be 2048/5120 = 0.4. The non-
predictive collector has almost as much overhead for
sweeping as the non-generational collector, and has at
least as much overhead for scanning roots, so the non-
predictive collector’s advantage is not quite so large as
the mark/cons ratios would suggest.

5 Mathematical analysis

The garbage collection problem for the radioactive de-
cay model has two degrees of freedom: the half-life
h and the load factor, defined as the amount of live
storage divided by the total size of the heap. Let L
be the inverse of the load factor. The live storage

3

at equilibrium is n ≈ h/(log 2), and the heap size is
N = nL ≈ hL/(log 2). Let

r = 2−1/h = 1− 1

n
≈ 1− log 2

h

Let g = j/k be the fraction of storage devoted to the
young generation. Let f be such that 0 ≤ f ≤ g and
Nf is the space available in steps 1 through j following
a garbage collection and renaming of steps.

Assume g ≤ 1/2, and assume that all unavailable
storage in steps 1 through j is actually live. If j is
chosen as we recommend in Section 8, then f = g and
this assumption will be vacuously true.

The next collection will occur after Nf new objects
have been allocated. At that time, the expected number
of live objects in steps 1 through j is

liveh(f, g) =

Nf∑

t=1

2−t/h +N(g − f)2−Nf/h

=
r(1− rNf)

1− r +N(g − f)rNf

=
1− 1

n

1− (1− 1
n)

(1− rNf) + nL(g − f)rNf

= n[(1− 1

n
)(1− rNf) + L(g − f)rNf]

≈ n[(1− rNf) + L(g − f)rNf]

≈ n[(1− rhLf/(log 2))

+ L(g − f)rhLf/(log 2)]

= n[(1− 2−Lf/(log 2))

+ L(g − f)2−Lf/(log 2)]

= n[1− 2−Lf/(log 2)(1− L(g − f))]

Let

l(f, g) = 1− 2−Lf/(log 2)(1− L(g − f))

Theorem 3

lim
h→∞

liveh(f, g)

n
= l(f, g)

l(f, g) is the fraction of live storage that is expected to
reside in steps 1 through j at the beginning of the next
garbage collection.

The expected number of garbage objects in steps 1
through j is approximately

Ng − n l(f, g) ≈ h

log 2
(Lg − l(f, g))

The expected number of live objects in steps j + 1
through k is approximately

h

log 2
(1− l(f, g)) (2)

The expected number of garbage objects in steps j + 1
through k is approximately

h

log 2
(L(1− g)− 1 + l(f, g)) (3)

This is also the amount of space that will be reclaimed
by the next collection, so it is the expected amount of
free space after the next collection.

The expected amount of space available in steps 1
through j after the next collection and renaming of
steps is therefore

h

log 2
L min

(
g, 1− g +

l(f, g)− 1

L

)

Theorem 4 If f = g, g ≤ 1/2, and

L(1− 2g) ≥ 1− l(g, g)

then the expected mark/cons ratio is approximately

1− l(g, g)

L(1− g)− (1− l(g, g))

Proof:

l(g, g) = 1− 2−Lf/(log 2)

f = g means that all storage in steps 1 through j is free.
Under the hypotheses of the theorem, it is expected that
all storage in steps 1 through j will be free following the
next collection also, which implies a stable equilibrium.
All objects that are in steps 1 through j following a
collection are live, because there aren’t any. The mark/
cons ratio thus becomes a trivial calculation.

2
If the hypotheses of Theorem 4 do not hold, then the

mark/cons ratio can be estimated by computing a fixed
point

f = max

(
0,min

(
1− g +

l(f, g)− 1

L
, g

))
(4)

and dividing (2) by (3). The result of that division is
merely a lower bound, however, because it will not be
the case that all storage in steps 1 through j is live
following a collection and renaming.

If a non-generational mark/sweep collector were used
instead, the mark/cons ratio would be 1/(L− 1).

Corollary 5 If f = g, g ≤ 1/2, and

L(1− 2g) ≥ 1− l(g, g)

then the expected mark/cons ratio relative to a non-
generational mark/sweep collector is approximately

(L− 1)(1− l(g, g))

L(1− g)− (1− l(g, g))

4

This measure of relative CPU overhead is graphed in
Figure 1. The thin black lines in that figure are accu-
rate. The thick lines are lower bounds computed using
equation (4).

Figure 1: The mark/cons overhead for non-predictive
generational gc divided by the overhead for non-
generational gc, as a function of generation size and
inverse load factor L, for the radioactive decay model.
Thick lines are lower bounds.

6 Pragmatics

It remains to be seen whether non-predictive collectors
are useful in practice. Several issues must be addressed:

• The radioactive decay model is a poor model of
object lifetimes in most real programs.

• The dynamic tuning parameter j must be chosen
to reduce garbage collection overhead.

• Cyclic structures will not be reclaimed unless the
entire structure resides within a single generation.

• The size of the remembered set might increase
because non-predictive collectors cannot rely on
the heuristic that most inter-generational pointers
point from younger to older generations.

• The remembered set must be maintained a little
differently.

• The calculations in section 5 do not include the
cost of a write barrier.

• The calculations in section 5 do not include the
cost of tracing the root set (which includes part of
the remembered set).

The first issue is the most important, and is almost
independent of the garbage collector. We discuss it in
Section 7.

In Section 8 we discuss the remaining issues in the
context of Larceny, our implementation of Scheme for
the SPARC architecture [14, 21]. Larceny allows the
same binary code to be linked with any of several dif-
ferent garbage collectors. Two of these collectors are
a non-generational stop-and-copy collector, and a con-
ventional multi-generation collector that uses the stop-
and-copy code for its basic algorithm.

We have modified the multi-generation collector to
use a non-predictive collector for the oldest dynamic
generation. This collector does not yet match the de-
tailed description in Section 8. We will report on its
performance at the conference and on the World-Wide
Web [13].

7 Lifetimes of real objects

In most programs, young objects have a much shorter
life expectancy than old objects. This weak generational
hypothesis [22, 24, 39] is especially true of fast-allocating
programs for which the performance of garbage collec-
tion is most critical, and appears to be true even of
fast-allocating programs written in C [8].

Most generational collectors take advantage of this
by using a very light load factor for the youngest gen-
erations, and by using abandonment (as in the stop-
and-copy algorithm [10, 17, 30]) instead of sweeping to
reclaim storage. This makes the gc time for the young
generations proportional to the amount of live storage,
which is expected to be much smaller than the total
size of the young generations. Objects that do not die
young are copied to an older generation, where they can
be managed using a heavier load factor and a different
algorithm.

The result is that, compared to non-generational col-
lectors, conventional generational collectors make short-
lived objects much cheaper—a factor of 10 is typical—
while making long-lived objects a little more expensive.

In effect, conventional generational collectors predict
that every object will die young. Copying an object to
an older generation is a fairly cheap way to recover from
heuristic mis-prediction, however, so it is possible for
such collectors to perform reasonably well even when
object lifetimes do not match the heuristic predictor.

What should be done with objects that survive long
enough to be promoted out of the young generations?
We might hope to extract some computational advan-
tage from the strong generational hypothesis, which pos-
tulates a positive correlation between age and life ex-
pectancy even for long-lived objects [24, 39]. Unfor-

5

name lines of code brief description
nbody 1428 inverse-square law simulation [20, 40]
nucleic2 3732 determination of nucleic acids’ spatial structure [16, 23]
lattice 219 enumeration of maps between lattices
10dynamic 2342 Henglein’s dynamic type inference [25]
nboyer 767 term rewriting and tautology checking (see text)
sboyer 781 tweaked version of nboyer

Table 2: Six allocation-intensive benchmarks.

tunately there is little evidence that long-lived objects
show any strong correlation between age and life ex-
pectancy [24, 33, 32, 39].

7.1 Six fast-allocating benchmarks

Most programs spend little or no time in the garbage
collector, so we have selected six exceptional bench-
marks to illustrate the variety of storage behaviors with
which a garbage collector must contend. Table 2 lists
these programs, which are adapted from 5 of the 9
benchmarks considered by a recent paper on compiler
optimization [28]. More benchmarks can be found at
our web site [13].

The 10dynamic benchmark consists of an interproce-
dural static analysis iterated 10 times on its own source
code, to simulate its use on several files in succession.
The source code is read only once, before the measured
portion of the benchmark.

The nboyer benchmark is an updated version of a
toy theorem prover written by Bob Boyer circa 1977.
The original program was considered one of the more re-
alistic of the Gabriel benchmarks, and its storage behav-
ior has been examined by several authors [4, 6, 18, 31].
We have fixed one bug in addition to those noted by
Baker [4, 6], replaced property lists by a faster and more
portable data structure, and added a problem scaling
parameter suggested by Boyer [7].

The sboyer benchmark is nboyer with a local tweak
(shared consing) suggested by Henry Baker [6]. This
benchmark illustrates the changes in object lifetimes
that occur as a program is tuned to reduce excessive
allocation.

As can be seen from Table 3, these programs allo-
cate between one half and eight megabytes per second,
which is enough to make garbage collection matter. The
peak storage is estimated from the semiheap size cho-
sen by Larceny’s non-generational stop-and-copy collec-
tor. The times reported in Table 3 are elapsed time on
an otherwise idle machine with enough RAM to avoid
paging, taking the average of six runs (three in succes-
sion with each collector). Table 3 also shows the time
spent in the garbage collector as a fraction of the time
spent in the mutator, which is defined as the entire pro-

gram excluding the garbage collector. The overhead re-
ported for the generational collector was obtained using
1 megabyte for the youngest generation, an 800 kilobyte
static area for the standard library, and an intermedi-
ate dynamic area consisting of a single generation whose
size was adjusted to ensure that the generational collec-
tor would touch a little less storage than the stop-and-
copy collector. Both garbage collectors would perform
better if told to use a lighter load factor, especially for
nucleic2.

Table 3 shows that the relationship between alloca-
tion rate and garbage collection overhead is not sim-
ple. To understand the gc overhead we must look more
closely at several factors, including the lifetimes of ob-
jects.

7.2 Lifetimes of long-lived objects

The excessively rapid allocation by nbody and nucleic2

is an artifact of Larceny’s uniform 32-bit representation
for objects and of the Twobit compiler’s total ignorance
of floating point arithmetic. Each of the 7 million float-
ing point operations in nucleic2 allocates 16 bytes of
heap storage: a header word, a word of padding, and
two data words for an IEEE double precision floating
point number. Half of this storage allocation would
be eliminated by using IEEE single precision, which
Larceny does not currently support. A further 80 to
90 per cent would be eliminated by local or interproce-
dural optimization, respectively, of floating point values
[23]. This would increase the speed of the mutator as
well as reduce the overhead of garbage collection.

The lattice benchmark is typical of purely func-
tional programs. Despite its fairly high allocation rate,
it allocates almost no long-lived storage.

The 10dynamic benchmark is more difficult than its
allocation rate would suggest, because almost all of the
storage it allocates during each iteration survives until
nearly the end of the iteration. This benchmark satisfies
neither the weak nor the strong generational hypothe-
sis, which is why its performance becomes worse when
Larceny’s generational collector is used.

The storage allocated by one iteration of 10dynamic
is displayed graphically in Figure 2. The survival rates

6

name storage peak storage semiheap size mutator (gc time) / (mutator time)
allocated (estimated) (stop-and-copy) time stop-and-copy generational

nbody2-128 160 Mby < 1 Mby 2 Mby 51 sec 85% 20%
nucleic2 130 Mby < 1 Mby 2 Mby 16 sec 124% 96%
lattice 95 Mby 3 Mby 5 Mby 178 sec 5% 2%
10dynamic 18 Mby 2 Mby 3 Mby 13 sec 13% 28%
nboyer2 37 Mby 5 Mby 8 Mby 12 sec 52% 44%
sboyer2 10 Mby 1 Mby 3 Mby 14 sec 10% 4%
sboyer3 23 Mby 3 Mby 6 Mby 35 sec 9% 4%
sboyer4 54 Mby 10 Mby 15 Mby 100 sec 12% 6%

Table 3: Storage allocation and garbage collection overheads.

Figure 2: Live storage versus time for one iteration of
the dynamic benchmark. The peak is 1.1 megabytes
high. Each color represents the survivors from a
100,000-byte epoch of storage allocation. White rep-
resents storage that is more than 1,000,000 bytes old.

for one iteration are shown in Table 4.

100,000 to 200,000 bytes old: 91%
200,000 to 300,000 bytes old: 99%
300,000 to 400,000 bytes old: 99%
400,000 to 500,000 bytes old: 99%
500,000 to 600,000 bytes old: 99%
600,000 to 700,000 bytes old: 99%
700,000 to 800,000 bytes old: 99%
800,000 to 900,000 bytes old: 98%
900,000 to 1,000,000 bytes old: 98%
More than 1,000,000 bytes old: 95%

Table 4: Survival rates by age of object for one iteration
of dynamic, shown as the percentage that survives the
next 100,000 bytes of allocation.

When this pattern of storage allocation is iterated,
the survival rates change remarkably. Table 5 shows the
survival rates for the entire 10dynamic benchmark. The
oldest objects have the lowest survival rates because the
end of each phase involves a mass extinction, killing off
both young and old objects. Objects created near the
beginning of a phase don’t grow old until the phase is

well under way. By then the end is coming. Young
objects are populous throughout a phase, including the
beginning of the phase when they can anticipate a long
life.

500,000 to 1,000,000 bytes old: 59%
1,000,000 to 1,500,000 bytes old: 23%
1,500,000 to 2,000,000 bytes old: 1%

Table 5: Survival rates by age of object for 10dynamic,
shown as the percentage that survives the next 500,000
bytes of allocation.

Iterated processes, which are quite common, create
survival rates that are the opposite of those predicted
by the strong generational hypothesis. It may be possi-
ble to exploit these survival rates using a non-predictive
collector, even though they arise from a distribution of
object lifetimes that does not much resemble the ra-
dioactive decay model.

Of the six benchmarks considered here, nboyer is
the only one that could be cited as evidence for the
strong generational hypothesis. The storage pattern
shown in Figure 3 arises from recursive duplication and
rewriting of a tree that represents the theorem to be
proved. Many short-lived objects are allocated dur-
ing the rewriting of subtrees that are near the leaves.
Once a large subtree has been rewritten into its canon-
ical form, however, the storage used to represent that
subtree becomes nearly permanent. The survival rates
for long-lived objects are shown in Table 6. Although
nboyer does satisfy the weak generational hypothesis,
enough of its young objects survive to cause trouble for
generational garbage collectors.

Henry Baker observed that most of the short-lived
storage that is allocated by nboyer can be eliminated
by making the term rewriter check to see whether the
subterms it has rewritten are identical (in the sense of
a pointer comparison) to the subterms of the term it
is rewriting [6]. If they are, then the original term can
be returned instead of a copy. This change makes the

7

Figure 3: Live storage versus time for the nboyer1

benchmark; for nboyer2, the graph is similar but larger
and more complex. The peak is 2 megabytes high. Each
color represents the survivors from a 500,000-byte epoch
of storage allocation. White represents storage that is
more than 5,000,000 bytes old.

mutator a trifle slower, but greatly decreases garbage
collection time. The storage allocated by the modified
program, sboyer, is shown in Figure 4, and its survival
rates are shown in Table 7. The strong generational
hypothesis is not satisfied, and the weak generational
hypothesis is satisfied more weakly than before.

If this change in storage behavior is typical of the
changes that occur as a program is tuned for perfor-
mance, then the garbage collection overhead of produc-
tion code may have more to do with the overhead of
long-lived objects than with the short-lived objects that
are the focus of conventional generational collectors.

Non-predictive collectors should perform well when
the survival rate is independent of the age of an object,
and should perform especially well when the survival
rate decreases with age. In other words, non-predictive
collectors have the potential to perform well on pro-
grams for which the strong generational hypothesis fails.

8 Technical details

In Larceny we will continue to use our conventional gen-
erational collector for the young generations, and will
use a 2-generation non-predictive collector only for ob-
jects that survive long enough to be promoted into the
oldest dynamic generation of our conventional collector.

500,000 to 1,000,000 bytes old: 79%
1,000,000 to 1,500,000 bytes old: 92%
1,500,000 to 2,000,000 bytes old: 94%
2,000,000 to 2,500,000 bytes old: 84%
2,500,000 to 3,000,000 bytes old: 97%
3,000,000 to 3,500,000 bytes old: 91%
3,500,000 to 4,000,000 bytes old: 98%
4,000,000 to 4,500,000 bytes old: 98%
4,500,000 to 5,000,000 bytes old: 95%

More than 5,000,000 bytes old: 98%

Table 6: Survival rates by age of object for nboyer2,
shown as the percentage that survives the next 500,000
bytes of allocation.

Figure 4: Live storage versus time for the sboyer2

benchmark. The peak is 1.3 megabytes high. Each
color represents the survivors from a 500,000-byte epoch
of storage allocation. White represents storage that is
more than 5,000,000 bytes old.

Our use of a non-predictive collector for long-lived ob-
jects has no direct impact on the performance of our
garbage collector for short-lived objects.

Larceny version 0.27 allows for an ephemeral area
consisting of one or more generations containing young
objects that are managed by a stop-and-copy collector,
a dynamic area for older objects that can be managed
using a different garbage collection algorithm, and a
static area for code, constants, and global data.

Our prototype implementation uses a stop-and-copy
collector for all generations. We recognize that this
is silly, but for experimental purposes it is easier to
compare collectors that use the same basic algorithm
throughout. If the prototype works well, we intend to
add an alternative 2-generation non-predictive collec-
tor based on a mark/sweep algorithm with occasional
compaction.

It is often simpler to describe Larceny as it should be
rather than as it is, so the word “Larceny” in this section
should be understood as an idealized implementation,
not as any specific version.

8

500,000 to 1,000,000 bytes old: 99%
1,000,000 to 1,500,000 bytes old: 100%
1,500,000 to 2,000,000 bytes old: 100%
2,000,000 to 2,500,000 bytes old: 100%
2,500,000 to 3,000,000 bytes old: 100%
3,000,000 to 3,500,000 bytes old: 100%
3,500,000 to 4,000,000 bytes old: 98%
4,000,000 to 4,500,000 bytes old: 95%
4,500,000 to 5,000,000 bytes old: 100%

More than 5,000,000 bytes old: 100%

Table 7: Survival rates by age of object for sboyer2,
shown as the percentage that survives the next 500,000
bytes of allocation.

8.1 The dynamic tuning parameter

The tuning parameter j can be changed immediately
after every non-predictive collection, and its value can
be decreased at any time.

Although its value can be viewed as a prediction
about the mutator’s future behavior, it is more useful
to view j as a parameter that can be varied in response
to what the mutator has done in the past. In particular,
storage that is allocated by the mutator cannot reach
the non-predictive portion of the Larceny heap except
by surviving at least one collection in the ephemeral
area. This gives the garbage collector a chance to see
what is coming into the non-predictive heap, and to
respond by adjusting the value of j. Some specific re-
sponses are mentioned below.

When a non-predictive collection is complete, and
the steps have been renumbered, j should be chosen so
that steps 1 through j are empty and j ≤ k/2. Neither
of these conditions is absolutely necessary, but they sim-
plify the garbage collector. Subject to these constraints,
the choice of j is not terribly critical because it can be
reduced later.

If l is the greatest integer such that steps 1 through
l are empty, then

j = bl/2c
seems like a reasonable choice. It is convenient to re-
consider this choice whenever a step becomes full.

8.2 Cyclic structures

If the tuning parameter j is chosen as we recommend,
then steps 1 through j will be empty following a non-
predictive collection and renumbering of steps. This
means that any cyclic garbage within the non-predictive
portion of the heap will be reclaimed by the next non-
predictive collection.

8.3 Size of the remembered set

In a conventional generational collector, the remem-
bered set consists of all objects (or object slots) that
contain pointers into a younger generation.

With a non-predictive collector, the remembered set
must also contain all objects (or slots) in steps 1 through
j that point into steps j + 1 through k. The remem-
bered set does not have to contain objects in steps j+1
through k that point into steps 1 through j.

Objects (or slots) that are in the remembered set
only because they point from steps 1 through j into
steps j+ 1 through k are kept separate from the rest of
the remembered set. See Section 8.6.

If j is chosen as we suggest, then j ≤ k/2 so it might
seem that the non-predictive collector is likely to de-
crease the size of the remembered set. This is possible,
but an increase is more likely. For example, strict func-
tional programs create structures whose pointers almost
always point from younger to older objects. For a con-
ventional generational collector, this implies that the
remembered set is nearly empty. For a non-predictive
collector, this implies that the remembered set may be-
come very large unless the garbage collector acts first.

The garbage collector used for the ephemeral area
can count the number of pointers within the ephemeral
area that point outside the ephemeral area. This costs
very little, because the ephemeral collector must recog-
nize those pointers anyway. This count can be used to
estimate the number of entries that will be added to
the remembered set when objects within the ephemeral
area are promoted into the non-predictive heap. If the
current value of the tuning parameter j would cause
the remembered set to grow unacceptably large, then
its value can be reduced before those objects are pro-
moted.

8.4 Computation of the remembered set

A full collection empties the remembered set and pro-
motes all live storage to the static area. Full collections
occur only when requested explicitly by the mutator.

In Larceny, the remembered set contributes to the
root set that must be traced during every garbage col-
lection. When an object (or slot) in the remembered set
is traced, the garbage collector can determine whether
the object still contains any cross-generational pointers
that require it to remain in the remembered set. If not,
the object can be removed from the remembered set.

This test adds a little to the cost of tracing the
remembered set, so it is omitted from the code that
is normally used during a minor collection within the
ephemeral area.

There are six ways in which an object that resides

9

within the non-predictive heap could become part of
the remembered set. The first three ways can arise
with conventional generational collection, and the other
three are analogous.

1. The object survives a garbage collection, and con-
tains a pointer into the ephemeral area.

2. The object is promoted from the ephemeral area
into the non-predictive heap, and contains a pointer
into the ephemeral area.

3. The object is the target of an assignment that
stores into it a pointer into the ephemeral area.

4. The object survives a non-predictive garbage col-
lection, resides somewhere in steps 1 through j
after the steps are renumbered and the new j is
chosen, and contains a pointer into steps j + 1
through k.

5. The object is promoted from the ephemeral area
into steps 1 through j, and the object contains a
pointer into steps j + 1 through k.

6. The object resides somewhere in steps 1 through
j, and is the target of an assignment that stores
into it a pointer into steps j + 1 through k.

Situations 1, 2, and 4 do not occur in Larceny. Situa-
tion 1 does not arise because a non-predictive collection
always promotes all live objects out of the ephemeral
area into the non-predictive heap. Likewise situation 2
does not arise because a promoting collection from the
ephemeral area into the non-predictive heap promotes
all live objects. Situation 4 does not arise because j is
chosen so that steps 1 through j are empty following a
non-predictive collection.

Situation 5 can only occur during a conventional
stop-and-copy collection that promotes live storage from
the ephemeral area into the non-predictive heap; it can-
not occur during a non-predictive collection. Before the
collection begins, Larceny decides whether all objects
will be promoted into the generation comprising steps
1 through j or into the generation comprising steps j+1
through k; Larceny never allows a promoting collection
to promote some objects into steps 1 through j and oth-
ers into steps j + 1 through k. Larceny can decide to
promote all objects into steps j + 1 through k without
knowing how much storage will be occupied by the pro-
moted objects because it has the flexibility to decrease
j following the collection.

Situation 5 is detected during the promoting collec-
tion when the object is traced, after it has been copied
into the non-predictive heap. When it is traced, each
pointer that it contains must be tested anyway to de-
termine whether it points

• to storage that has already been copied out of the
ephemeral area,

• to storage within the ephemeral area that has not
yet been copied, or

• to storage elsewhere that should not be copied.

Situation 5 cannot arise during the first two cases, be-
cause all objects are promoted into the same generation.
If objects are being promoted into steps 1 through j,
then the last case involves an additional test to deter-
mine whether the pointer points into steps j+1 through
k. The marginal cost of this test appears to be small.

Objects that enter the remembered set via promo-
tion (situation 5) are kept separate from objects that
enter the remembered set via side effect (situations 3
and 6). See Section 8.6.

Situations 3 and 6 are detected by the write barrier,
which does not distinguish between them.

8.5 The write barrier

Larceny’s conventional collector already uses a write
barrier, so the marginal cost is very small.

8.6 Cost of tracing roots

The non-predictive collector has no effect on the cost
of tracing roots for a collection in the ephemeral area,
or for a collection that promotes from the ephemeral
area to the dynamic area, because the root set for such
collections does not include the portion of the remem-
bered set that records pointers from steps 1 through j
into steps j + 1 through k.

These pointers do form part of the root set for a non-
predictive collection, but it appears to be much cheaper
to trace only these pointers than it would be to trace
every live pointer in steps 1 through j. Even so, this is
probably one of the more significant costs that reduce
the advantage of non-predictive generational collection.

9 Related work

The original paper on generational garbage collection
used decay as a metaphor, and the radioactive decay
model is often used in studies of storage management,
so it is surprising that there has been no mathemati-
cal analysis of generational garbage collection using the
model [29, 38].

Henry Baker observed that the radioactive decay
model is an important test case for generational garbage
collection, and conjectured that generational collection
had no advantage over non-generational collection for

10

the radioactive decay model and a uniform memory sys-
tem [5, 39].

There is a great deal of empirical evidence to show
that most heap-allocated objects die young, even in lan-
guages like C [8, 9, 11, 12, 24, 31, 36, 35, 39]. There
is no empirical support for the idea that long-lived ob-
jects show a strong correlation between age and life ex-
pectancy [24, 33, 32, 39].

Equation (1) quantifies a relationship noted by Barry
Hayes, who pointed out that if all objects decay at
the same rate, as in the radioactive decay model, then
the low survival rates that are observed for young ob-
jects would imply a negligible number of old objects,
contrary to experience. Nevertheless Hayes concluded
that “the spectacular differential in reclamation rates
between very new objects and slightly older objects is
absent at later times” [24].

We observe that it is impossible for survival rates
to increase monotonically with age while sustaining a
spectacular differential in survival rates at all ages, be-
cause the survival rate cannot exceed 100%. If survival
rates increase monotonically, then the survival rates of
sufficiently long-lived objects must be fairly uniform, as
in the radioactive decay model. We also observe that
uniform survival rates, or rates that decrease with age,
are favorable to non-predictive generational collection.

Larceny’s non-predictive collector is a generational
collector that uses an unconventional promotion policy
for long-lived objects. Promotion policies are usually
described in the context of young generations, which are
typically managed as a pipeline between the youngest
and oldest generations [2, 9, 19, 26, 35, 36]. Policies for
long-lived objects have been described by both Moon
and Zorn [31, 42].

10 Conclusion

Generational collectors derive part of their efficiency
from heuristic selection of the generations to collect.
This is an easier problem than heuristic prediction of
object lifetimes.

Not even the radioactive decay model can prevent a
generational collector from organizing its generations to
obtain a computational advantage over non-generational
collectors.

In theory, a non-predictive generational collector can
exploit survival rates that are independent of age or
decrease with age. Some real programs exhibit such
rates for long-lived objects, and there are theoretical
reasons to believe such rates may be common.

The practical significance of this remains to be seen.

11 Acknowledgements

We are grateful to Henry Baker, Marc Feeley, and An-
drew Wright for providing us with source code or ideas
for these benchmarks.

References

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Math-
ematical Functions. National Bureau of Standards Applied
Mathematics Series, 55, June 1964.

[2] Andrew W. Appel. Simple generational garbage collection
and fast allocation. Software Practice and Experience 19(2),
February 1989, pages 171–183.

[3] Henry G. Baker. List processing in real time on a serial com-
puter. CACM 21(4), April 1978, pages 280–294.

[4] Henry G. Baker. The Boyer benchmark at warp speed. ACM
Lisp Pointers 5(3), July–September 1992, pages 13–14.

[5] Henry G. Baker. Infant mortality and generational garbage
collection. SIGPLAN Notices 28(4), April 1993, pages 55–57.

[6] Henry G. Baker. The Boyer benchmark meets linear logic.
ACM Lisp Pointers 6(4), October–December 1993, pages 3–
10.

[7] Henry G. Baker. Personal communication via electronic mail,
6 November 1995, quoting a personal communication via fax
from Bob Boyer dated 3 December 1993.

[8] David A. Barrett and Benjamin G. Zorn. Using lifetime pre-
dictors to improve memory allocation performance. In ACM
SIGPLAN Conference on Programming Language Design
and Implementation, 1993, pages 187–196.

[9] Patrick J. Caudill and Allen Wirfs-Brock. A third-generation
Smalltalk-80 implementation. In Conference on Object Ori-
ented Programming Systems, Languages, and Applications
(OOPSLA ’86), October 1986, pages 119–130.

[10] C. J. Cheney. A nonrecursive list compacting algorithm.
CACM 13(11), November 1970, pages 677–678.

[11] Douglas W. Clark and C. Cordell Green. An empirical study
of list structure in LISP. CACM 20(2), February 1977, pages
78–87.

[12] Douglas W. Clark. Measurements of dynamic list structure
use in Lisp. IEEE Transactions on Software Engineering,
5(1), January 1979, 51–59.

[13] William Clinger. Further measurements relevant to this pa-
per will be made available through the World-Wide Web.
See http://www.ccs.neu.edu/home/will/GC/index.html.

[14] William Clinger and Lars Thomas Hansen. Lambda, the ul-
timate label; or a simple optimizing compiler for Scheme.
In ACM Conference on Lisp and Functional Programming,
June 1994, pages 128–139.

[15] Alan Demers, Mark Weiser, Barry Hayes, Daniel Bobrow,
and Scott Shenker. Combining generational and conserva-
tive garbage collection: framework and implementations. In
ACM Symposium on Principles of Programming Languages,
January 1990, pages 261–269.

[16] Marc Feeley, Marcel Turcotte, and Guy Lapalme. Using Mul-
tilisp for solving constraint satisfaction problems: an appli-
cation to nucleic acid 3D structure determination. In Journal
of Lisp and Symbolic Computation 7(2/3), 1994, pages 231–
246.

[17] Robert R. Fenichel and Jerome C. Yochelson. A LISP
garbage-collector for virtual-memory computer systems.
CACM 12(11), November 1969, pages 611–612.

11

[18] Richard P. Gabriel. Performance and Evaluation of Lisp
Programs. MIT Press, 1985.

[19] Marcelo J. R. Gonçalves and Andrew Appel. Cache per-
formance of fast-allocating programs. In ACM SIGPLAN-
SIGARCH-WG2.8 Conference on Functional Programming
Languages and Computer Architecture (FPCA), June 1995,
pages 293–305.

[20] Leslie Greengard. The Rapid Evaluation of Potential Fields
in Particle Systems. ACM Press, 1987.

[21] Lars Thomas Hansen. The Impact of Programming Style on
the Performance of Scheme Programs. M.S. thesis, Univer-
sity of Oregon, 1992.

[22] David R. Hanson. Storage management for an implemen-
tation of SNOBOL4. In Software: Practice and Experience
7(2), March 1977, pages 179–192.

[23] Pieter H. Hartel, Marc Feeley, et al. Benchmarking imple-
mentations of functional languages with “Pseudoknot”, a
float-intensive benchmark. In Journal of Functional Pro-
gramming 6(4), July 1996, pages 621–655.

[24] Barry Hayes. Using key object opportunism to collect old ob-
jects. In Conference on Object Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA ’91), October
1991, pages 33–46.

[25] Fritz Henglein. Global tagging optimization by type infer-
ence. In Proceedings of the ACM Symposium on Lisp and
Functional Programming, 1992, pages 205–215.

[26] Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanović.
A comparative performance evaluation of write barrier im-
plementations. In Conference on Object Oriented Program-
ming Systems, Languages, and Applications (OOPSLA ’92),
October 1992, pages 92–109.

[27] IEEE Standard for the Scheme Programming Language.
IEEE Std 1178-1990.

[28] Suresh Jagannathan and Andrew Wright. Effective flow anal-
ysis for avoiding run-time checks. In Proceedings of the 2nd
International Static Analysis Symposium, Springer-Verlag
LNCS 983, September 1995, pages 207–224.

[29] Henry Lieberman and Carl Hewitt. A real-time garbage col-
lector based on the lifetimes of objects. CACM 26(6), June
1983, pages 419–429.

[30] Marvin Minsky. A LISP garbage collector algorithm using
serial secondary storage. MIT AI Memo 58, 1963.

[31] David Moon. Garbage collection in a large Lisp system.
In ACM Conference on Lisp and Functional Programming,
1984, pages 235–246.

[32] Patrick M. Sansom and Simon L. Peyton Jones. Generational
garbage collection for Haskell. In Conference on Functional
Programming Languages and Computer Architecture, 1993,
pages 106–116.

[33] Darko Stefanović and J. Eliot B. Moss. Characterisation of
object behaviour in Standard ML of New Jersey. In ACM
Conference on Lisp and Functional Programming, 1994,
pages 43–54.

[34] George B. Thomas, Jr. Calculus and Analytic Geometry.
Addison-Wesley, 1968.

[35] David M. Ungar. Generation scavenging: a non-disruptive
high-performance storage reclamation algorithm. In ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, ACM SIG-
PLAN Notices 19(5), May 1987, pages 157-167.

[36] David Ungar and Frank Jackson. An adaptive tenuring pol-
icy for generation scavengers. ACM Transactions on Pro-
gramming Languages and Systems, 14(1), January 1992,
pages 1–27.

[37] Paul R. Wilson, Michael S. Lam, and Thomas G. Moher.
Caching considerations for generational garbage collection.
In ACM Conference on Lisp and Functional Programming,
June 1992, pages 32–42.

[38] Paul R. Wilson, Mark S. Johnstone, Michael Neely,
and David Boles. Dynamic storage allocation: a survey
and critical review. In Proceedings of the 1995 Interna-
tional Workshop on Memory Management, September 1995,
Springer-Verlag LNCS. Available via anonymous ftp from
cs.utexas.edu, in pub/garbage.

[39] Paul R. Wilson. Uniprocessor garbage collection techniques.
ACM Computing Surveys, to appear. Available via anony-
mous ftp from cs.utexas.edu, in pub/garbage.

[40] Feng Zhao. An O(N) algorithm for three-dimensional n-body
simulations. Master’s thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of
Technology, 1987.

[41] Benjamin Zorn. The measured cost of conservative garbage
collection. Software Practice and Experience 23(7), 1993,
pages 733–756.

[42] Benjamin Zorn. Garbage collection using a dynamic threat-
ening boundary. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, June 1995,
pages 301–314.

12

