
An Experimental Study of Renewal-Older-First Garbage Collection

Lars T Hansen
Opera Software
Oslo, Norway

lth@opera.com

William D Clinger
Northeastern University

Boston, MA 02115

will@ccs.neu.edu

Abstract

Generational collection has improved the efficiency of garbage col-
lection in fast-allocating programs by focusing on collecting young
garbage, but has done little to reduce the cost of collecting a heap
containing large amounts of older data. A new generational tech-
nique, older-first collection, shows promise in its ability to manage
older data.

This paper reports on an implementation study that compared two
older-first collectors to traditional (younger-first) generational col-
lectors. One of the older-first collectors performed well and was
often effective at reducing the first-order cost of collection relative
to younger-first collectors. Older-first collectors perform especially
well when objects have queue-like or random lifetimes.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms

Algorithms, Measurement, Performance, Experimentation

Keywords

generational garbage collection, older-first

1 Introduction

Garbage collection is a technology that automatically reclaims un-
reachable heap storage [24]. (As is common in the literature on
garbage collection, we use “live” as a synonym for reachable, and
“dead” as a synonym for unreachable.) Generational garbage col-
lectors divide the heap into two or more regions, known as gen-
erations because they often group objects of similar age, and col-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’02, October 4-6, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-487-8/02/0010 ...$5.00

lect these generations at different times [24, 27]. Most generational
garbage collectors attempt to collect younger generations more fre-
quently than older generations, so we call them younger-first col-
lectors.

Younger-first generational garbage collectors usually outperform
non-generational garbage collectors. Why?

One pop explanation is that “most objects die young”, but Henry
Baker revealed the inadequacy of this explanation by consider-
ing a radioactive decay model of object lifetimes, in which each
live object has a 50% probability of dying during the next inter-
val whose duration is the half-life that parameterizes the model [2].
If this half-life is short, then most objects die young, but a con-
ventional generational collector will actually perform worse than a
non-generational collector [9].

A more sophisticated explanation for the effectiveness of genera-
tional garbage collectors is that they try to predict which objects
are likely to die soon, and how well they work depends upon the
accuracy of these heuristic predictions. This explanation is also
incorrect. The radioactive decay model makes it impossible to pre-
dict which objects will die soon. No heuristic predictor can do bet-
ter or worse than chance, so if this explanation were correct we
would expect generational collectors to perform the same as non-
generational collectors for the radioactive decay model. In fact,
conventional generational collectors perform worse.

How do they manage to do that? By collecting the wrong gener-
ations. Younger-first collectors collect young objects more often
than old. These young objects haven’t had much time to die, so
collecting them doesn’t recover much storage. An older-first gener-
ational collector, which collects old objects more often than young,
would recover more storage for a similar amount of effort [9].

Why then do younger-first collectors usually perform well in prac-
tice? Because most programs satisfy the weak generational hypoth-
esis, which asserts that young objects die at a considerably faster
rate than older objects [19]. Hence the young generations often
contain a higher fraction of unreachable objects than the older gen-
erations, despite the fact that young objects have not had much time
to die.

The weak generational hypothesis is important. Its generalization,
the strong generational hypothesis, postulates a negative correlation
between age and mortality rate even for long-lived objects [19, 29,
30, 36]. There is little empirical support for the strong generational
hypothesis. Although some of our own data on object lifetimes
provide new support for the strong hypothesis, our data also show

why the strong hypothesis does not matter very much: There cannot
be a strong negative correlation between age and mortality rate that
holds for objects of all ages, because the mortality rate cannot be
less than zero. Even if the strong generational hypothesis holds, the
difference between the mortality rate for a group of objects of age
t and the mortality rate for older objects will tend to approach zero
as t increases.

In other words, the strong generational hypothesis implies that the
mortality among sufficiently long-lived objects must resemble that
of a radioactive decay model. Since conventional younger-first col-
lectors perform poorly for radioactive decay models, this would in
turn imply that conventional generational collection is inappropriate
for long-lived objects. This conclusion is remarkable because the
strong generational hypothesis had been regarded as the primary
justification for younger-first collection of long-lived objects.

In a previous paper, we described a novel algorithm for older-first
generational garbage collection, and calculated that, for radioac-
tive decay models of object lifetimes, our new collector should out-
perform non-generational and younger-first generational collectors.
We also described our design and implementation of a hybrid col-
lector that we hoped would combine the advantages of younger-first
and older-first collection [9].

In this paper we report on the performance of that hybrid collector.

2 Renewal-Older-First (ROF) Collection

In this section we describe a pure renewal-older-first (ROF) gener-
ational collector. (This algorithm is exactly the same as the “non-
predictive” algorithm that we described previously, but we have
adopted the more descriptive name that Darko Stefanović gave to it
[9, 31]. Our ROF algorithm described here should not be confused
with Stefanović’s deferred-older-first (DOF) algorithm [17, 31].)

A pure renewal-older-first collector divides the heap into two gener-
ations, and always collects the older generation. Instead of group-
ing objects according to their actual age, however, the ROF algo-
rithm groups objects according to their renewal age, which is de-
fined as the time that has passed since the object was last classified
as reachable by a collection within its generation, or as its actual
age if it has never been considered for collection.

After each collection, therefore, the objects in the older generation
that survived the collection are considered to be the youngest ob-
jects. We implement this by dividing the heap into steps that contain
objects of similar age, and relabel the steps following each collec-
tion.

A pure ROF collector never performs a full collection.

Figure 1 illustrates the ROF collector as implemented in Larceny,
our implementation of Scheme [8, 16, 26]. The steps of the ROF
heap are arranged by age, from youngest to oldest; step 1 holds the
youngest objects. Additional steps are kept in reserve for use by
a copying collector, and are not available for allocation. A policy
parameter j determines the dividing line between the younger and
older generations of the ROF heap. Steps 1 ����� j are in the younger
generation, and steps j

�
1 ����� k are in the older.

When the dynamic area is collected, the boldly outlined older gen-
eration (steps j

�
1 ����� k) is collected by evacuating its live data into

the reserve. Then the steps are rearranged: the younger genera-

Young Old Reserve

1 2 3 4 5 6 7 8 9

j k

1 2 34 5 6 789

k

1 2 3 4 5 6 7 8 9

j k

1 2 3 4 5 6 7 8 9

j k

1 2 34 5 6 7 8 9

k

1 2 3 4 5 6 7 8 9

j k

1 2 3 4 5 6 7 8 9

j k

1 2 34 5 6 78 9

k

1 2 3 4 5 6 7 8 9

j k
Figure 1. The ROF collector as implemented in Larceny. The
figure shows triples of collector configurations: before a collec-
tion, after a collection but before renumbering of steps and se-
lection of j, and after renumbering and selection of a new value
for j. Shaded steps are full, and unshaded steps are empty. The
thick frame surrounds the steps that are subjected to garbage
collection, and the heavy shading shows the steps that contain
the survivors of the collection. Steps that are not collected are
simply moved.

tion (steps 1 ����� j) become the oldest steps (steps k � j
�

1 ����� k)
of the ROF heap, and the shaded survivors of the collected gen-
eration (the s steps of the reserve) become the youngest steps
(k � j � s

�
1 ����� k � j). (That is, the survivors are treated as if they

were newly allocated objects; this is what gives the renewal-older-
first collector its name.) Some of the free steps are used to replenish
the reserve, and the remaining free steps become available for allo-
cation (steps 1 ����� k � j � s).

Following collection, Larceny sets j to 1
�
2 the number of free steps.

This ensures that large circular garbage structures will be collected
and that the younger generation of the ROF heap will not be unrea-
sonably large.

3 Hybrid (3ROF) Collection

We implemented a hybrid ROF collector by allowing any number
of younger-first generations to precede the ROF heap. The hybrid
ROF collector usually performs best with only one younger-first
generation, so that is the configuration we describe here.

Our 3ROF collector is a 3-generational collector that consists of
two generations that are collected by the ROF algorithm, plus a
youngest generation, the nursery, which is collected and evacuated
as part of every collection. The hybrid algorithm is younger-first in
the sense that it collects the nursery most often, but is older-first in
the sense that the oldest generation is collected more often than the
intermediate generation.

In fact, the intermediate (younger ROF) generation is never col-
lected at all. Dead objects within that generation are collected only
after they have been folded into the older ROF generation.

In addition to the usual write barrier for mutator code, the 3ROF
collector itself incorporates an additional write barrier that records
pointers from the intermediate (younger ROF) generation into the
older ROF generation. These pointers are created when objects are
promoted from the nursery into the intermediate generation, and
must be traced during a major collection. This additional write bar-
rier is used only during a minor collection that promotes into the
intermediate generation; the mutator does not use it, nor does a ma-
jor collection, nor does a minor collection that promotes directly
into the older ROF generation.

Even so, the barrier adds a cost to promotions, and this cost is par-
ticularly noticeable in Scheme programs that use many pairs. The
standard collector has been tuned to handle pairs particularly effi-
ciently, and the additional cost of the write barrier, though low in
absolute terms, makes up a substantial fraction of the cost of copy-
ing and scanning a pair in the hybrid ROF collector. This cost would
be less significant in languages like Java.

4 Larceny and its Collectors

This section describes our Larceny implementation of Scheme and
some characteristics of its garbage collectors [8, 16, 17, 23, 25].

4.1 Compiler

Larceny uses the Twobit optimizing compiler to compile Scheme
to SPARC machine code. Previous measurements have estab-
lished that Twobit and Larceny together have performance that is
roughly competitive with Standard ML of New Jersey and with

commercial Common Lisp and Scheme systems [8]. A few prelim-
inary benchmarks also suggest that Larceny’s default generational
garbage collector is competitive with the default collector used in
Sun’s HotSpot Java system.

Twobit incorporates a number of optimizations that limit heap allo-
cation largely to allocation performed explicitly by the source pro-
gram. In particular, neither continuation frames nor environment
structures are allocated on the heap unless the program explicitly
captures the continuation or creates a closure using a lambda ex-
pression that escapes (as determined by a first-order closure anal-
ysis). Program variables that are updated by assignment are heap-
allocated, but Scheme programs are largely functional in nature and
heap-allocated variables are few in practice.

4.2 Collectors

Larceny currently supports five interchangeable garbage collectors,
including four precise collectors that use Cheney’s copying algo-
rithm: a conventional younger-first generational collector, two dif-
ferent (ROF and DOF) hybrid older-first collectors, and a non-
generational stop-and-copy collector [7]. The three generational
collectors also use a non-copying algorithm to collect the large-
object (� 4 Kby) spaces that are associated with each generation
[20].

Generations are grouped into three areas. The ephemeral area con-
tains the youngest collected generations, the dynamic area contains
the oldest collected generations, and the static area contains ob-
jects that are permanent. The static area is never collected during
normal operation. In addition, some memory is kept in a reserve for
copying collection.

The youngest ephemeral generation is called the nursery; all object
allocation takes place in that generation. Objects are allocated by
incrementing an allocation pointer; the pointer is kept in a machine
register, and allocation is very fast.

Garbage collection is driven by allocation: When the nursery is full,
the collector evacuates all live objects from the nursery into some
older generation. The collector may also choose to collect other
generations at that time.

A collection that collects only the nursery is known as a minor col-
lection. A collection that collects the entire heap is a full collection.
A collection that collects at least one generation in addition to the
nursery but does not collect the entire heap is classified as a major
collection.

The heap may be resized following a major or full collection. All
collectors use a command-line parameter 1

�
L, called the load fac-

tor, to compute the new heap size. The inverse load factor L tells
the collector how much memory it is permitted to use, as a multi-
ple of the amount of reachable storage l. The new heap size H � is
computed as H ��� lL. Since l memory is already live, and l mem-
ory will be needed as reserve for the next garbage collection, the
amount of memory available for allocation is H � � 2l.

4.3 Write Barrier and Remembered Set

Generational collectors use a write barrier and a remembered set
to keep track of intergenerational pointers, which come into play
when only part of the heap is collected.

Program Lines of Allocation Peak live Promotion Mutator time Major GC Minor GC Ratio
code volume (est.) rate (stop+copy) (msec) (msec)

5earley:12 658 299.0 13.5 0.21 11.04 1392 1684 0.83
5earley:13 658 35.0 53.17 7455 4045 1.84 *
gcbench:5 226 1757.0 16.8 0.27 19.12 18824 10534 1.79
gcold:25,1,0 381 347.0 26.5 0.44 5.37 6947 4072 1.71
gcold:25,1,1000 381 402.0 26.5 0.38 40.56 7025 4186 1.68
gcold:25,10,100 381 264.0 26.5 0.06 36.89 919 538 1.71
gcold:100,1,0 381 1389.0 101.5 27.35 28840 11798 2.44 *
gcold:100,1,1000 381 1606.0 101.5 121.72 30282 11962 2.53 *
nboyer:3 767 99.0 13.0 0.45 4.30 1498 1154 1.30
nboyer:4 767 266.5 35.0 7.98 4905 2708 1.81 *
nboyer:5 767 846.0 100.0 23.42 22660 8692 2.61 *
5nboyer:3 767 497.0 13.0 0.44 20.40 6784 5169 1.31
5nboyer:4 767 1470.0 35.0 38.77 21535 12840 1.68 *
5sboyer:4 781 259.0 13.4 0.26 61.41 1831 1816 1.01
5sboyer:5 781 687.0 30.0 121.77 7000 4218 1.66 *
perm:200,8,1 324 229.0 11.5 1.00 4.44 11393 3955 2.88
perm:25,8,8 324 229.0 11.5 1.00 4.55 5578 4262 1.31
perm:200,9,1 324 2059.0 100.0 1.00 30.43 82003 33550 2.44 *
perm:25,9,8 324 2059.0 100.0 1.00 30.53 81742 33125 2.47 *
twobitlong 23,789 665.0 7.9 0.08 138.13 892 4009 0.22
twobitshort 23,789 119.5 7.5 0.18 22.17 652 907 0.72
5twobitshort 23,789 575.5 7.5 0.17 108.17 2804 3461 0.81

Table 1. Characteristics of the benchmark programs. Allocation and peak live volume are reported in megabytes. The promotion
rate is the fraction of allocation that is promoted out of a 1 megabyte nursery in the generational collectors. The mutator time, in
seconds, is the average across several runs of the stop-and-copy collector. The gc times, in milliseconds, are the average across several
runs of the 2GEN collector. The gc times for major and minor collections are reported separately, and their ratio is shown. An
asterisk (*) in the last column indicates that the benchmark was run by Clinger on a bigger and slightly faster machine.

In an assignment *lhs=rhs the write barrier first determines
whether rhs is a pointer, and if it is, performs table lookups on
lhs and rhs to determine their generation numbers. If the gener-
ation number of rhs is less than that of lhs, then lhs is inserted
into a sequential store buffer, which will later be folded into the re-
membered set [21]. Larceny’s remembered set currently uses hash
tables to filter duplicates from its component subsets.

Larceny’s older-first collectors require objects to be recorded in sev-
eral subsets at the same time. That requirement makes card marking
and header marking less attractive, since each card or object would
need one mark bit for each subset of the remembered set in which
it might be recorded.

For the benchmarks reported in this paper, the size of the extra re-
membered subset that is required by the 3ROF collector was limited
to 32768 entries. When the size of that subset exceeded this limit,
that remembered subset and the intermediate (younger ROF) gen-
eration were both cleared by reducing the value of the parameter j
that determines the boundary between the younger and older ROF
generations. This effectively protected the 3ROF collector from ex-
cessively large remembered sets by allowing it to degrade into a
conventional 2-generational younger-first collector.

For more engineering details on the write barrier and remembered
set, see our earlier paper and Hansen’s PhD thesis [9, 17].

5 Benchmarks

Many programs pose little challenge to even a simple garbage col-
lector, usually because they have little live data or a low rate of
allocation. Furthermore all of the generational algorithms (2GEN,
3GEN, 3ROF) perform well even on most allocation-intensive pro-

grams, because those programs usually satisfy the weak genera-
tional hypothesis.

We are therefore interested primarily in how well a collector per-
forms on programs that are abnormal in the sense that garbage col-
lection accounts for a substantial fraction of their execution time.
Most of these abnormally gc-intensive programs do not satisfy the
weak generational hypothesis as well as more typical programs,
which results in an unusually high rate of promotion out of the
youngest generation—instead of the typical 1% promotion rate, gc-
intensive programs may have promotion rates of 10–100%.

The benchmarks we selected are small Scheme programs that we
knew to be gc-intensive, plus one larger benchmark (an optimiz-
ing Scheme compiler) that is not particularly gc-intensive but had
been observed to perform poorly with the Boehm-Demers-Weiser
conservative (imprecise) collector. Three of the programs are syn-
thetic garbage collection benchmarks, which are especially useful
for studying the best-case and worst-case behavior of garbage col-
lectors.

Some of the other programs make sense as garbage collection
benchmarks only if they are run several times back-to-back in the
same process and measurements are taken for all the iterations as a
whole. Neither earley nor sboyer are suitable uniterated, because
their live storage grows monotonically and most garbage is short-
lived, so these programs reach their peak size with little opportunity
for garbage collection of older objects. Although the use of iterated
benchmarks is a common practice, it should be noted that iteration
skews the distribution of object lifetimes in a way that should favor
older-first collection.

These benchmarks are available at our web site [10].

Mark/cons ratio Major GCs Rem. Set (Mby)
2GEN 3GEN 3ROF 2GEN 3GEN 3ROF 2GEN 3GEN 3ROF

5earley:12 0.34 0.60 0.32 8.37 7.79 7.95 0.27 0.40 0.84
5earley:13 17.00 15.00 15.25 1.30
gcbench:5 0.69 0.43 0.89 84.26 31.07 122.44 0.27 0.40 0.53
gcold:25,1,0 1.02 1.61 0.77 10.84 11.05 8.95 0.27 0.40 0.53
gcold:25,1,1000 0.90 1.54 0.73 11.00 11.21 9.53 0.27 0.40 0.54
gcold:25,10,1000 0.14 0.29 0.14 1.16 0.95 1.21 0.27 0.40 0.55
gcold:100,1,0 1.22 1.84 0.91 14.25 14.50 11.50 0.54
gcold:100,1,1000 1.07 1.70 0.80 14.50 14.50 11.25 0.57
nboyer:3 0.87 1.16 0.90 7.00 4.88 7.27 0.27 0.40 0.99
nboyer:4 1.15 1.44 1.06 12.00 9.50 10.75 1.15
nboyer:5 1.44 1.80 1.32 21.00 17.00 18.50 1.60
5nboyer:3 0.87 1.15 0.90 33.71 24.67 35.40 0.27 0.40 1.05
5nboyer:4 1.04 1.36 0.97 52.00 41.75 46.25 1.26
perm:200,8,1 2.76 3.26 2.50 40.50 36.69 40.56 0.27 0.40 0.53
perm:25,8,8 1.74 2.41 1.36 29.00 27.20 25.89 0.27 0.40 0.53
perm:200,9,1 2.80 3.70 2.39 38.25 37.25 31.00 0.53
perm:25,9,8 2.65 3.56 2.25 59.00 57.5 47.75 0.53
5sboyer:4 0.46 0.77 0.45 10.31 9.69 10.50 0.27 0.40 0.91
5sboyer:5 0.66 1.03 0.61 17.25 15.25 15.00 1.18
twobitlong 0.12 0.15 0.11 8.53 3.37 7.89 0.29 0.45 0.84
twobitshort 0.32 0.65 0.30 3.89 2.95 3.58 0.34 0.49 0.90
5twobitshort 0.31 0.68 0.29 18.79 12.89 17.06 0.34 0.53 1.00

Table 2. Averages, across all runs, for mark/cons ratio, major garbage collections, and peak size of remembered set.

2GEN 3ROF (for varying L) 3ROF
2.25 2.5 2.75 3.0 Mean GEN

5earley:12 24.6 27.6 29.8 31.7 33.3 30.6 1.24
gcbench:5 23.8 26.6 26.7 27.1 27.6 27.0 1.13
gcold:25,1,0 25.8 27.4 27.8 28.8 30.1 28.5 1.10
gcold:25,1,1000 26.4 27.5 28.2 29.5 31.0 29.0 1.10
gcold:25,10,1000 35.3 33.8 34.3 38.2 37.2 35.9 1.02
nboyer:3 24.0 28.8 33.6 34.5 38.0 33.7 1.40
5nboyer:3 23.5 29.3 30.5 32.4 33.4 31.4 1.34
perm:200,8,1 19.7 22.6 23.8 24.4 24.9 23.9 1.21
perm:25,8,8 19.8 22.3 23.2 24.7 25.3 23.9 1.21
5sboyer:4 26.2 30.3 33.7 36.3 38.6 34.7 1.32
twobitlong 78.8 89.4 89.4 91.6 94.7 91.3 1.16
twobitshort 45.5 49.7 49.4 49.5 53.4 50.5 1.11
5twobitshort 36.3 44.6 45.8 47.7 48.6 46.7 1.29

Table 3. Average promotion cost per volume (ms/MB)

� ���
��� �
�
� �
���
� �
� �
� �	�

� � ��� ��
 � �
 � � ��� �
 �

��
��	�
� ���	��

�������	�����! "

���#��!
%$�& � �

'

'

'

'

'
' '

'
'

'
'

'
' '
'

'
(��)*
%+��-,.&

�

�

�

�� �
� � �

�

� �
�

�

�
� � � �

�

(�%�	�0/1& �	2 �

3 3 3 33 3 3 3 3313 3 3 3333 343

3
(�%�	�0/1& �	2!� �	���

5 5 5 55 5 5 5 55 565 5 555 5 5 5

5(�%�	�0/1& � � 2!� ���	�

7 7 7 7

7 7

7 7 77-7 787 7
77 7 7
7

7+9)*�:$	
%#;& <

=
= = == = = = = = =

==
=

=

 +9)*�:$	
�#�& <

> > > >> > >> > > >> > >

>��
�#� ?& � ��� 2!�

@ @ @ @@ @ @ @@@ @@@ @

@�*
%#� A& �	
 2 �

B B
B

BB BBB BBBB BBBBB

B

	C)*�:$	
�#�& �

D D
D DD
D
D

D DD
D��EF�)G�H���!�	+ (I I I I

II
I I III I I
IIII I I

I

��EF�)J�K� C ,G��#L�

M
M

MMM MMM MMM M
M
M

M MMM M

M

 ��E6��)G�K� C ,J�	#��

NN N NN N NN NN NN N NN NNN N
N

Figure 2. A space/time diagram comparing Larceny’s stop-and-copy and 2-generational younger-first collectors. Negative coordi-
nates indicate that the stop-and-copy collector is better; positive coordinates indicate that the 2-generational collector is better. For
example, the point at O 68 P 35 Q shows that on this particular run of earley, the stop-and-copy collector requires 68% more CPU time
and 35% more heap space than the 2-generational collector.

earley is an implementation of Earley’s parsing algorithm, writ-
ten by Marc Feeley [13]. In our benchmarks, this program
first creates a parser from an ambiguous grammar, and then
computes all parses of an input of length 12 or 13 that has
an exponential number of parse trees; this is iterated 5 times.
earley constructs its output in a functional manner, and the
resulting data structure necessarily contains all young-to-old
pointers.

gcbench is a synthetic garbage collection benchmark written by
John Ellis and Pete Kovac, modified by Hans Boehm, and
translated from Java into Scheme by Will Clinger. To reduce
edge effects, we modified gcbench to perform its stretching
phase once and then to iterate the rest of the program n times.
gcbench was run with n � 5.

gcold is a synthetic garbage collection benchmark written by
David Detlefs and translated from Java to Scheme by Will
Clinger. The program creates a number of large trees and
then repeatedly replaces random subtrees with newly allo-
cated trees and moves subtrees around in the data structure
by swapping them.

gcold was run in five configurations. Three configurations
have 25 megabytes of large trees and run for 200 iterations,
and the other two configurations have 100 megabytes of large
trees and run for 800 iterations. At each of these two sizes,
the configurations differ in the ratio of short-lived to long-
lived storage and the amount of mutation work: we used the
settings R 1 P 0 S , R 1 P 1000 S , and R 10 P 1000 S , omitting the third
setting for the larger size.

For each size, the different configurations were intended to al-
locate the same amount of storage, but several problems with
the benchmark code that were discovered late prevent the al-
location volumes from being equal. We elected not to correct
these problems, which makes the results from this benchmark
a little harder to interpret.

boyer is a toy term-rewriting theorem prover derived from the
Boyer benchmark in the Gabriel benchmark suite [14]. The
program uses pairs extensively and constructs its data struc-
tures functionally. The versions used here, nboyer and
sboyer, fix some bugs, are written in portable Scheme, and
incorporate a problem scaling parameter [1, 3, 4, 10]. nboyer
and sboyer differ only in that sboyer uses a local tweak—
shared consing—to reduce the amount of storage allocation;
this tweak results in a radically different live storage profile
for sboyer [3, 10, 17].

nboyer was run with scaling parameters 3, 4, and 5, as a sin-
gle iteration or iterated five times. sboyer was run with scal-
ing parameters 4 and 5, iterated five times.

perm is a synthetic garbage collection benchmark written by Will
Clinger, Gene Luks, and Lars Hansen. It represents the worst
case for a younger-first generational collector: no objects die
young, and all object deaths are oldest-first.

The program maintains a queue of data structures, each rep-
resenting all permutations of the first N integers. As new data
structures are allocated, old data structures are removed from
the queue and become garbage.

For N � 8 there are 40,320 permutations in each list, occupy-
ing about 1.2 megabytes (sharing is extensive). The lists are
generated without creating any garbage whatsoever, and with
the settings we have chosen the survival rate out of the nursery
is 100%.

perm was run in four configurations. perm200,8,1 and
perm25,8,8 allocate the same amount of data—computing
all permutations of 8 things 200 times—and have the same
peak live size, but differ in the lifetime of the data: the former
removes one datum from the queue on every iteration, the lat-
ter removes eight.

twobit is the Twobit optimizing compiler for Scheme [8, 25]. It
is a typical old-style Lisp program: lists are used to represent

many data structures, and most of the objects allocated are
pairs. twobit creates graph representations of the program
being compiled and then annotates and updates those repre-
sentations using side effects.

twobit is run in two configurations. The twobitshort
benchmark compiles another program, Nucleic2, in whole-
program optimization mode. Nucleic2 is about 3200 lines of
source. The twobitlong benchmark compiles the source for
twobit itself, about 23,800 lines.

The measurements for twobit include all allocation for I/O,
but the time measurements do not include time spent waiting
for I/O.

Some characteristics of these benchmark programs are shown in
Table 1. The peak live sizes include the size of the static area be-
cause the collectors include it when they compute the heap size,
and the peak live size for earley includes a worst-case stack of
1.4 megabytes.

An important question about the benchmarks is whether enough
time is spent in garbage collection in the dynamic area. The suite
will not be a good test of dynamic-area collection algorithms if
garbage collection time is dominated by minor collections. Table 1
shows that the larger fraction of the time is spent on major collec-
tions in most of these programs, but 55%–60% of the GC time on
twobitshort and fully 80% of the GC time on twobitlong are
spent promoting data. Thus, the opportunities for the dynamic-area
collector to improve the collection times are good in most cases, but
notably restricted in the case of twobitlong.

6 Measurements

Hansen performed most of our measurements on a Sun Ultra 5
workstation running Solaris 2.6. It had an UltraSPARC-IIi pro-
cessor running at 333 MHz, 2 megabytes of secondary cache, and
128 megabytes of RAM. It provides CPU time accounting with a
resolution of 10 milliseconds. Measurements were obtained while
this machine was connected to a network and operating in multi-
user mode, but no other users were on the system. X Windows was
running on the machine’s console but was inactive.

Clinger supplemented these measurements by running larger ver-
sions of the more scalable benchmarks on a Sun Ultra 80 Model
4450 with 4 UltraSPARC-II processors running at 450 MHz,
4 megabytes of secondary cache, and 2 gigabytes of RAM. These
benchmarks were run using a newer version of Larceny, without
testing as many configurations or collecting as much data. Their
timings are reported separately in Figures 5 and 6.

To reduce measurement noise, we report CPU times and the best of
three runs (rather than elapsed time and the average of three runs,
say). Paging was never an issue.

In reporting the space used by a collector, we count all heap space
that is actually allocated by the collector, exclusive of storage for
remembered sets. (Some representations for remembered sets are
more compact than others, so our representation could be regarded
as biased. We report the space required by our remembered sets
separately in Table 2.)

Efficient garbage collection is a tradeoff between time and space, so
when benchmarking it is important to control the amount of space
that the different collectors use. Unfortunately, it is not much easier

Percent Volume (Mby)
3ROF Promo 3ROF Promo

float float float float
5earley:12 0.0 0.8 0.0 0.6
gcbench:5 17.5 48.5 149.5 278.7
gcold:25,1,0 0.0 0.0 0.0 0.0
gcold:25,1,1000 8.2 0.0 19.1 0.0
gcold:25,10,1000 35.7 8.6
nboyer:3 0.0 0.0 0.0 0.0
5nboyer:3 0.0 0.0
perm:200,8,1 0.0 0.0 0.0 0.0
perm:25,8,8 -1.2 0.0 -3.4 0.0
5sboyer:4 0.0 0.0 0.0 0.0
twobitlong 4.1 16.1 2.9 9.7
twobitshort 0.2 11.4 0.1 3.5
5twobitshort 2.4 31.3 3.7 37.6

Table 4. 3ROF and promotion float, by average percent-
age of excess copying and average excess volume copied (in
megabytes), for L � 3 � 0. The volumes of promotion float are
very close to the volumes reported for 2GEN. Blank entries
were not measured but will be zero.

to keep space constant across collectors while measuring gc time
than it is to hold the time constant while measuring space. Our
compromise is to report both time and space as in Figure 2, while
attempting to control space in three different ways:

� One set of runs placed an upper limit on the heap size, though
each collector was free to use less memory than the limit.
These runs were conducted with five heap sizes, spaced at
least two megabytes apart, ranging between two and three
times the peak storage required by the benchmark.

� Another set of runs placed both upper and lower limits on the
heap size. In all runs the upper limit was set as above, and the
lower limit was set 2 megabytes below the upper limit; thus
the collectors had a little room to maneuver, but not much.

� The third set of runs instructed the garbage collector to resize
the heap as necessary to use no more than L times the collec-
tor’s estimate of live storage. These runs were conducted for
L � 2 � 25, 2.5, 2.75, and 3.0.

In addition to measuring CPU time, we measured the number of
words of storage that a collector copies during the execution of a
benchmark. Dividing this by the number of words allocated by the
benchmark yields the mark/cons ratio. The mark/cons ratio allows
us to separate the abstract (theoretical) efficiency of a garbage col-
lector from its concrete cost of copying a word, which has a lot to
do with how tightly the collector’s inner loops are coded. Both the
mark/cons ratio and the cost of copying a word are of interest, and
both together are more informative than CPU time alone would be.

7 Experimental Results

In this section we compare the performance of Larceny’s hybrid
3ROF collector to Larceny’s conventional 2-generational (2GEN)
and 3-generational (3GEN) younger-first collectors.

The space/time diagrams in Figures 3, 4, and 5 provide a quick
impression of how these collectors compare with respect to space
and overall CPU time. Figure 6 shows how the 2GEN and 3ROF
collectors compare with respect to garbage collection time for the
larger benchmarks. Many more figures and tables can be found in
Hansen’s thesis, which is online [17].

� � �
� � �
� ���
��� �
�
� �
���
� �
� �

� � ��� � � � � � � � � � ��� � � � � � �

��
��	�
� ���	��

�������	�����! "

;��#��H
�$�& � �

'

'

'

'

'

' ' '' ''
'

'

'
'' ' ''

'
(��)*
%+J�-, &

�

�

��� �

�

�

�
�

�

�
�

� ��

�

(�%�	�0/1& ��2 �

3 333 3 3 33 3 3 33 3 3333 33

3
(�%�	�0/1& ��2H� �	���

5
5 5555 5 5
55 55 5 5
5 5
55 5

5(�����!/.& � � 2!� �	���
7 77777 77 7 77 7 77
777 77

7+9)��:$�
%#;& <

== =
== === =

==

=

 +9)*�:$	
%#;& <

>> > >>> > >> >
>

��
�#� ?& � �	� 2H�
@@@@ @ @@@ @@@ @ @@

@��
�#� ?& �	
 2 �
B
B

BBB
BBB B

BB

B

BB BB B

B

�C)*�:$	
%#;& �

D
D
DDD D D

D
D D D D

D��E6��)G�H���!�	+ (
I
I

I I
I
II
I
I
I III I
II II

I
��EF�)G�H� C ,G��#L�

M M
M MMM M MMM M MM
M
MM M MM

M

 ��EF�)J�K� C ,G��#L�

N
N
NN N N N
NN NN N NNN N N
N

N

Figure 3. Space/time diagram comparing 2GEN (better along the negative axes) and 3ROF (better along the positive axes).

� � � �
� � �	�
� � �
� � �
� ���
��� �
�
� �
���
� �
� �
� �	�

� � � � ��� ��� � � � � ��� � � � �

��
��	�
� ���	��

�������	�����! "

'

'

'
'

'
' ' ' ''' '

''

''
'
''�

�

�
�

� ��� �
�

�
���

33 33 3 3 3 3 333 3*33 333 3 3
5
5 5 55 5 5 5 55 5 5 555 5
5 5 57 7

7
7
77

77

7

7

77 77 7 77 77 = ===
=

=====
= >>>> > > >>> >

@@@@ @ @@@@@@ @@BBBB B BB B B
B BB B BB

D

D

DD DD D
DD

D
D D
I
I

I
I I
II
IIIII I I

II
II M M
M M MM MM
M MM MMM
M M M
MM NNN NNNN
NN NN N NNN NN
N

Figure 4. Space/time diagram comparing 3GEN (better along the negative axes) and 3ROF (better along the positive axes).

� <

� <	�
���	

��� �
� �

� � �
��

�

� �
�

��
 �
 � � �
 � � ��

� ���	��

�����-�������! "

���#��!
%$�& � < '
'

'

'

'
(�����!/1& � ��� 2!�	2 � �

�

�
�

�

(�����!/.& � �	� 2!�	2!� ���	� 3

33
3

3

+9)*�:$	
%#;& � 5

555

5

+9)*�:$	
%#;&
 7

7
7

7

7

 +9)*�:$	
�#�& � =

== = =

	C)*�:$	
�#�&
 >

>

>

>

>

��
�#� ?& � ��� 2 �G2!� @

@
@@

@

�*
%#� ?& ��
 2 �G2 � B

B

B

B
B

Figure 5. Space/time diagram comparing 2GEN (better along the negative axes) and 3ROF (better along the positive axes) for the
larger benchmarks run on a bigger machine. The x-axis is total CPU time.

� <

� <	�
���	

��� �
� �

� � �
��

�

� �
�

� <	� ��� � � � � � � � � � <	� � �
 �

� ���	��

��� ���H "

'

'

'

'

�

�
�

�

3 3
3

3

555

5

7
7

7

7

=== =
>

>

>

>
@

@@
@

B

B

B
B

Figure 6. Space/gc-time diagram comparing 2GEN (better along the negative axes) and 3ROF (better along the positive axes) for the
larger benchmarks run on a bigger machine. The x-axis is CPU time expended on garbage collection.

7.1 Summary of Findings

The 2GEN collector had the best overall performance, the 3ROF
collector was a close second, and the 3GEN collector was a distant
third.

It was mildly surprising that 2GEN outperformed 3GEN on most of
our benchmarks. We have identified several reasons for this, but the
most important is that, by definition, gc-intensive benchmarks are
atypical. In particular, they often have an unusually high fraction of
fairly long-lived but not permanent objects.

The 2GEN collector promotes these objects by copying them just
once, whereas the 3GEN collector must copy them at least twice be-
fore they enter the oldest dynamic generation. The 3ROF collector
promotes these objects into the intermediate generation by copying
them just once, and promotes them into the older ROF generation
without copying them, where they often died without being copied
a second time.

Table 2 shows that the 3ROF collector’s mark/cons ratios are fre-
quently better than those of the younger-first collectors. It should
be noted that 2GEN and 3GEN sometimes use less heap memory
than 3ROF, and lower heap sizes tend to pull up the averages for the
mark/cons ratio and number of major collections, making 2GEN
and 3GEN look worse relative to 3ROF than they actually are. It
is clear, however, that the 3ROF collector often marks fewer words
than the younger-first collectors, especially on the gcold, perm, and
the larger nboyer and sboyer benchmarks.

Only on one program, gcbench, does the 3ROF collector have
worse mark/cons ratios, and that program has object lifetimes that
just do not fit the models for which the 3ROF collector was de-
signed. With gcbench, most of the objects in the younger ROF
generation will be dead when a major collection occurs, and the
permanently live storage of that benchmark will account for a large
fraction of the data in the older ROF generation. Therefore the ma-
jor collection will reclaim a smaller amount of storage than would
a full collection with 2GEN, and the frequency of collections must
increase. 3GEN does even better than 2GEN on this one bench-
mark because, once it has promoted the permanent storage into the
oldest generation, it doesn’t have to look at it again except during
full collections. Adding a fourth generation to the 3ROF collector
would improve its performance on gcbench, but whether this can
be done without compromising its performance on other programs
is an open question.

Except for gcbench, the 3ROF collector was faster than the 3GEN
collector, but sometimes used more space.

The 3ROF collector did not always compare well against 2GEN, as
it tends to use more space and has a higher average cost per word
promoted out of the nursery. The 3ROF collector did perform im-
pressively on the gcold and perm benchmarks, however. gcold’s
random mutations give it object lifetimes that resemble a radioac-
tive decay model, and perm has queue-like lifetimes, both of which
favor older-first collection.

The 3ROF collector usually spends about as much time in major
collections as the 2GEN collector, but its minor collections tend
to be more expensive, so its total gc time is often slightly higher.
On the smaller benchmarks, this is often offset by a lower mutator
time, despite the fact that the mutator code is identical for both [17].
Unlike 2GEN, the 3ROF collector never performs a full collection,
which may have some advantages for cache performance. This ef-

fect did not show up in the larger benchmarks, possibly because
their heaps are much larger than the hardware caches.

The 3ROF collector has more floating garbage than the younger-
first collectors, and requires more space for its remembered sets,
but in both cases the increases are moderate.

We have not calculated averages or geometric means across bench-
marks because our benchmark programs are unlikely to be repre-
sentative even of gc-intensive programs, and we have further dis-
torted the averages by running more benchmarks with some pro-
grams (gcold) than others (gcbench). Also, averages would tend
to direct a reader’s attention toward the goal of optimizing for the
(ill-defined) average gc-intensive program, when the more promis-
ing and important goal is to match each program to a collector that
helps it to perform well.

7.2 Cost of Copying

Though the 3ROF collector usually has a lower mark/cons ratio than
2GEN, its GC times are often higher, and the reason is that it is
more expensive to perform some collections. The collector must
use a write barrier during promotions into the ROF-young genera-
tion (steps 1 ����� j) to allow the remembered set to track pointers into
the ROF-old generation; it must also insert any intercepted pointers
into the remembered set. The write barrier is not particularly ex-
pensive in itself, nor is remembered set insertion expensive, but the
cost of copying and scanning a word is already small, so even the
small absolute costs of the extra operations add up to a substantial
relative cost. Table 3 shows the cost, expressed in milliseconds per
megabyte, of promoting into the dynamic area (both generations).
This is not pure copying cost: it also includes the cost of scanning
the remembered set, which in some cases will be slightly larger than
for the remembered set of 2GEN.

The high promotion costs for twobit are caused by a performance
bug that affects all of Larceny’s generational collectors [17].

The 3ROF collector’s unit promotion cost rises with the inverse load
factor L because a larger value of L increases the proportion of pro-
motions into the younger ROF generation, where the extra write
barrier comes into play.

7.3 Floating Garbage

The garbage collector must assume that all objects in the remem-
bered set are live. That is not always true, as objects may die after
they have been inserted into the remembered set but before their
generation is collected. When the dead objects in the remembered
set refer to other dead objects in the collected region, those dead
objects must be copied by the collector. They are called floating
garbage, or just float.

We measured the amount of float in the 3ROF collector by using a
special mark/sweep collector that marks all live objects but sweeps
only the remembered set. This operation does not disturb the heap,
so the resulting reductions in copying are accurate representations
of how the programs are affected by float.

Table 4 shows 3ROF float (float due to major collections not being
full collections) and promotion float (float due to minor collections
that promote into the ROF heap), across all settings for the 3ROF
collector. Overall, 3ROF float is moderate across the benchmarks—
the high value shown for gcold:10,1000 results from the very

small number of collections recorded for this benchmark. Promo-
tion float is often high, but we measured a comparable amount of
promotion float for the 2GEN collector, so the 3ROF collector does
not appear to create much more float than conventional generational
collectors.

7.4 Remembered Sets

The 3ROF collector uses more space for the remembered set than
either of the younger-first collectors, and in many cases the remem-
bered set grows to over 3% of the heap size (see Table 2).1 The rea-
son for the larger remembered set is that the 3ROF collector needs
to track pointers from the ROF-young generation into the ROF-old
generation. Many data structures in typical Scheme programs cre-
ate young-to-old pointers, so the extra remembered set is expected
to grow large in some of these programs [9].

More imperative languages, such as Java, have less bias toward
young-to-old pointers.

8 Related Work

There are now several general surveys of garbage collection [11,
24, 36].

Generational collection and the weak generational hypothesis were
first described in 1983 by Lieberman and Hewitt [27], although ear-
lier work foreshadowed the technique [5, 12, 18]. Lieberman and
Hewitt motivated the younger-first technique by appealing to the
predominance of pointers from young data to old data, though they
presented no evidence that such a predominance existed. Hayes
stated and cast doubt on the strong generational hypothesis [19].

Important early contributions to generational collection were made
by Ungar and Moon, both of whom described actual implementa-
tions [28, 34].

Not all generational collectors have been strictly younger-first.
Moon reported that the garbage collector of the Symbolics Lisp
machine would only collect those ephemeral generations that were
full [28], and the mature object space collector (usually called the
train algorithm), invented by Hudson and Moss, will collect data in
an order that is similar to older-first but that is also influenced by
the topology of the heap [15, 22].

Spurred by Baker’s conjecture that generational collection had no
theoretical advantage over non-generational collection for the ra-
dioactive decay model, we invented the ROF algorithm described
here, and showed its theoretical advantage by calculation [2, 9]. We
also outlined the implementation of our prototype 3ROF collector,
but did not provide details of its performance [9].

Stefanović invented a better name for our ROF collector, which we

1The remembered set sizes in the table are the allocated size, not
the peak size measured in the number of entries in the set. 2GEN
has two remembered set data structures, 3GEN has three, and 3ROF
has four—so the minimum remembered set size for the 3ROF col-
lector is twice that of 2GEN, as the entry for e.g. gcbench shows.
The imprecision in the remembered set size measurements is re-
grettable but does not preclude one from concluding, as the table
shows, that the remembered sets for the 3ROF collector grow be-
yond their minimum size more often than the remembered sets for
2GEN and 3GEN.

had originally called “non-predictive,” and invented several other
older-first algoritms, notably his deferred-older-first (DOF) algo-
rithm [31, 32]. His simulations of these algorithms showed that
his DOF algorithm has lower mark/cons ratios than the other algo-
rithms on a suite of Smalltalk and Java programs, and he argued
that a DOF collector should also perform well in practice. Imple-
mentations of the DOF and the related Beltway collectors in Java
have now confirmed this [6, 33].

Hansen implemented and benchmarked a hybrid version of the
DOF algorithm as well as the hybrid 3ROF algorithm presented
here. The hybrid DOF algorithm was usable but did not perform
as well on our benchmarks as the 3ROF algorithm. Hansen’s mea-
surements revealed two main reasons for this: a pure DOF algo-
rithm would have performed better than our hybrid version, and
the DOF algorithm tends to create excessive amounts of floating
garbage [17].

9 Conclusions and Future Work

Older-first generational garbage collection is a new technology that
greatly expands the design space for generational garbage collec-
tors. For example, the DOF and Beltway algorithms are inherently
less disruptive than our ROF collector, which is in turn less disrup-
tive than conventional younger-first collectors.

It would be desirable to replicate our experiments with more bench-
marks, in other systems, and for other programming languages.

Clinger has been using linear combinations of radioactive decay
models with different half-lives to model object lifetimes, and to
analyze the theoretical performance of idealized algorithms for
garbage collection. This work provides quantitative explanations
for the success of younger-first generational collectors, and explains
why they perform better than older-first or hybrid algorithms on
some programs but worse on others.

Several runtime systems now offer a choice of multiple garbage
collectors. Eventually we can expect runtime systems to select a
garbage collector based on dynamic observation of the programs
they are executing.

10 References

[1] Henry G. Baker. The Boyer benchmark at warp speed. ACM
Lisp Pointers 5(3), July–September 1992, pages 13–14.

[2] Henry G. Baker. Infant mortality and generational garbage
collection. ACM SIGPLAN Notices 28(4), April 1993, pages
55–57.

[3] Henry G. Baker. The Boyer benchmark meets linear logic.
ACM Lisp Pointers 6(4), October–December 1993, pages 3–
10.

[4] Henry G. Baker. Personal communication via electronic mail,
6 November 1995, quoting a personal communication via fax
from Bob Boyer dated 3 December 1993.

[5] A. Bawden, R. Greenblatt, J. Holloway, T. Knight,
D. A. Moon, and D. Weinreb. Lisp machine progress report.
AI Memo 444, MIT AI Lab, August 1977.

[6] Steve M. Blackburn, Richard Jones, K. S. McKinley, and J.
Eliot B. Moss. Beltway: Getting Around Garbage Collection
Gridlock. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), June 17-19, 2002.

[7] C. J. Cheney. A nonrecursive list compacting algorithm. Com-
munications of the ACM 13(11), November 1970, pages 677–
678.

[8] William D Clinger and Lars Thomas Hansen. Lambda, the
ultimate label, or a simple optimizing compiler for Scheme.
Proceedings of the 1994 ACM Conference on Lisp and
Functional Programming. ACM LISP Pointers VIII(3), July–
September 1994, pages 128–139.

[9] William D Clinger and Lars T Hansen. Generational Garbage
Collection and the Radioactive Decay Model. Proceedings of
the 1997 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), ACM SIGPLAN
Notices 32(5), May 1997, pages 97–108.

[10] William Clinger. Data provided via the World-Wide Web at
http://www.ccs.neu.edu/home/will/GC/index.html.

[11] Jacques Cohen. Garbage collection of linked data structures.
ACM Computing Surveys 13(3), September 1981, pages 341–
367.

[12] L. Peter Deutsch and Daniel G. Bobrow. An efficient incre-
mental automatic garbage collector. Communications of the
ACM 19(7), July 1976, pages 522–526.

[13] J Earley. An efficient context-free parsing algorithm. Commu-
nications of the ACM 13(2), 1970, pages 94–102.

[14] Richard P. Gabriel. Performance and Evaluation of Lisp Sys-
tems. The MIT Press, 1985.

[15] Jacob Seligmann and Steffen Grarup. Incremental mature
garbage collection using the train algorithm. In Proceedings
of 1995 European Conference on Object-Oriented Program-
ming, Lecture Notes in Computer Science, Springer-Verlag,
August 1995.

[16] Lars Thomas Hansen. The impact of programming style on the
performance of Scheme programs. M.S. Thesis, University of
Oregon, 1992.

[17] Lars Thomas Hansen. Older-first Garbage Collection in Prac-
tice. Ph.D. Thesis, Northeastern University, November 2000.
Available online—see [10].

[18] David R. Hanson. Storage Management for an Implemen-
tation of SNOBOL4. Software—Practice and Experience 7,
1977, pages 179–192.

[19] Barry Hayes. Using key object opportunism to collect old ob-
jects. In Conference on Object Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA ’91), October
1991, pages 33–46.

[20] Michael W. Hicks, Luke Hornof, Jonathan T. Moore and Scott
M. Nettles. A Study of Large Object Spaces. ISMM ’98—
International Symposium on Memory Management, pages
138–147. ACM Press, 1998.

[21] Anthony L. Hosking, J. Eliot B. Moss, and Darko Stefanović.
A Comparative Performance Evaluation of Write Barrier Im-
plementations. OOPSLA ’92 Conference Proceedings, ACM
SIGPLAN Notices 27(10), October 1992, pages 92–109.

[22] Richard L. Hudson and J. Eliot B. Moss. Incremental garbage
collection for mature objects. In Proceedings of Interna-
tional Workshop on Memory Management, (Yves Bekkers and
Jacques Cohen, editors), Lecture Notes in Computer Science
637. Springer-Verlag, September 1992.

[23] IEEE Standard for the Scheme Programming Language. IEEE
Std 1178-1990.

[24] Richard Jones and Rafael Lins. Garbage Collection: Algo-
rithms for Automatic Dynamic Memory Management. John
Wiley & Sons, 1996.

[25] Richard Kelsey, William Clinger, and Jonathan Rees (editors).
Revised5 Report on the Algorithmic Language Scheme. ACM
SIGPLAN Notices 33(9), September 1998, pages 26–76.

[26] The Larceny home page at http://www.larceny.org/.

[27] Henry Lieberman and Carl Hewitt. A Real-Time Garbage
Collector Based on the Lifetimes of Objects. Communications
of the ACM 26(6), 419–429, June 1983.

[28] David A. Moon. Garbage Collection in a Large Lisp System.
In ACM Conference on Lisp and Functional Programming,
235–246, 1984.

[29] Patrick M. Sansom and Simon L. Peyton Jones. Generational
garbage collection for Haskell. In Conference on Functional
Programming Languages and Computer Architecture, 1993,
pages 106–116.

[30] Darko Stefanović and J. Eliot B. Moss. Characterisation of ob-
ject behaviour in Standard ML of New Jersey. In ACM Con-
ference on Lisp and Functional Programming, 1994, pages
43–54.

[31] Darko Stefanović. Properties of Age-Based Automatic Mem-
ory Reclamation Algorithms. Ph.D. thesis, University of Mas-
sachusetts, Amherst, Massachusetts, February 1999.

[32] Darko Stefanović, Kathryn S. McKinley, and J. Eliot B. Moss.
Age-Based Garbage Collection. OOPSLA ’99 Conference
Proceedings, ACM SIGPLAN Notices 34(10), October 1999,
pages 370–381.

[33] Darko Stefanović, Matthew Hertz, Steve M. Blackburn, K. S.
McKinley, and J. Eliot B. Moss. Older-first Garbage Collec-
tion in Practice: Evaluation in a Java Virtual Machine. Work-
shop on Memory System Performance, Berlin, Germany, June
2002.

[34] David Ungar. Generation Scavenging: A Non-disruptive
High Performance Storage Reclamation Algorithm. In ACM
SIGSOFT-SIGPLAN Practical Programming Environments
Conference, Pittsburgh PA, April 1984, pages 157–167.

[35] Paul R. Wilson and Thomas G. Moher. Design of the oppor-
tunistic garbage collector. OOPSLA ’89 Conference Proceed-
ings, ACM SIGPLAN Notices 24(10), October 1989, pages
23–35.

[36] Paul R. Wilson. Uniprocessor garbage collection techniques.
ACM Computing Surveys, to appear. Available via anonymous
ftp from cs.utexas.edu, in pub/garbage.

