
Bounded-Latency
Regional Garbage

Collection

Felix S Klock II (Adobe Systems)
William D Clinger (Northeastern University)

The problem

✦ Naїve GC

✦

The problem

✦ Naїve GC ⟹ long pauses

✦

Scheme with stop+copy collector
pueue200:1000000:50:50

.........................

Scheme with stop+copy collector
pueue200:1000000:50:50

.........................#............

Scheme with stop+copy collector
pueue200:1000000:50:50

.........................#............#...........

........

Scheme with stop+copy collector
pueue200:1000000:50:50

.........................#............#...........

........#........................#................

.........#........................#...............

..........#........................#..............

Scheme with stop+copy collector
pueue200:1000000:50:50

The problem

✦ Naїve GC ⟹ long pauses

✦ Generational GC

✦

The problem

✦ Naїve GC ⟹ long pauses

✦ Generational GC ⟹ long pauses less often

✦

Java with generational collector
java -d32 -Xmx1900M PueueT 200 1000000 50 50

.....................

Java with generational collector
java -d32 -Xmx1900M PueueT 200 1000000 50 50

.....................#.............#.............#

.............................#....................

..........#................................#......

...........................#......................

Java with generational collector
java -d32 -Xmx1900M PueueT 200 1000000 50 50

The problem

✦ Naїve GC ⟹ long pauses

✦ Generational GC ⟹ long pauses less often

✦ Real-time / incremental / concurrent GC

✦ may add overhead to all programs

✦ may require mutator-specific fiddling

✦

The problem

✦ Naїve GC ⟹ long pauses

✦ Generational GC ⟹ long pauses less often

✦ Real-time / incremental / concurrent GC

✦ may add overhead to all programs

✦ may require mutator-specific fiddling

✦ may still have long pauses

..

..

........................#.........................

..#.

Java with garbage-first collector
java -XX:+UnlockExperimentalVMOptions \
 -XX:+UseG1GC -Xmx1900M PueueT 200 1000000 50 50

Dirty Little Secret...

Most Real-Time
Garbage Collectors

Aren’t.

Most Incremental
Garbage Collectors

Aren’t All That
Great Either.

Longest GC Pause

gcbench perm queue pueue

Scheme stop© 2.94 3.44 4.62 4.74

Scheme generational 3.13 3.23 4.28 4.45

Java default 2.78 2.93 3.24 3.32

Java concurrent m/s 15.45 0.50 0.45 5.94

Java garbage-first 2.13 4.68 4.29 5.84

Scheme regional 0.12 0.13 0.09 0.21

..

..

..

..

Scheme with regional collector
pueue200:1000000:50:50

Scalability
in space and time

Control Space:

Metadata &
Floating Garbage

Control Time:

Pause times &
Mutator Utilization

Pauses are disruptive

Pauses are disruptive

Bounded pauses can still be disruptive

Minimum Mutator
Utilization
(MMU)

=0% utilization

~1% utilization

~50% utilization

=0% utilization

~1% utilization

~50% utilization

Scalability (Definition)
There exist fixed worst-case bounds

1. All GC pauses are shorter than the fixed
bound (which is independent of heap size).

2. Minimum Mutator Utilization is bounded
from below (independent of heap size).

3. Memory usage is O(P), where P = peak
volume of reachable objects.

Scalability (Definition)
There exist fixed worst-case bounds

1. All GC pauses are shorter than the fixed
bound (which is independent of heap size).

2. Minimum Mutator Utilization is bounded
from below (independent of heap size).

3. Memory usage is O(P), where P = peak
volume of reachable objects.

Independent of mutator and heap size!

Scalability (Definition)
There exist fixed worst-case bounds such that

For all mutators, no matter what they do:

1. All GC pauses are shorter than the fixed
bound (which is independent of heap size).

2. Minimum Mutator Utilization is bounded
from below (independent of heap size).

3. Memory usage is O(P), where P = peak
volume of reachable objects.

Scalability (Definition)
There exist fixed worst-case bounds such that

For all mutators, no matter what they do:

1. All GC pauses are shorter than the fixed
bound (which is independent of heap size).

2. Minimum Mutator Utilization is bounded
from below (independent of heap size).

3. Memory usage is O(P), where P = peak
volume of reachable objects.

Scalability (Definition)
There exist fixed worst-case bounds such that

For all mutators, no matter what they do:

1. All GC pauses are shorter than the fixed
bound (which is independent of heap size).

2. Minimum Mutator Utilization is bounded
from below (independent of heap size).

3. Memory usage is O(P), where P = peak
volume of reachable objects.

Scalability (Theorem)
There exist fixed worst-case bounds such that

For all mutators, no matter what they do:

1. All GC pauses are shorter than the fixed
bound (which is independent of heap size).

2. Minimum Mutator Utilization is bounded
from below (independent of heap size).

3. Memory usage is O(P), where P = peak
volume of reachable objects.

How It Works

“Simple” Idea

✦ Divide heap into “regions” of fixed size.

✦ Collect each region independently.

✦ Since regions are bounded in size, we should
be able to do this in bounded time, right?

“Simple” Idea

✦ Divide heap into “regions” of fixed size.

✦ Collect each region independently.

✦ Since regions are bounded in size, we should
be able to do this in bounded time, right?

(yes, but just barely)

Collect one region
using Cheney’s

algorithm
(stop©)

How to do this
scalably?

Don’t inspect
extraneous state

Remembered Set?

(Generational Collection
[Lieberman and Hewitt ’83, Ungar ’84])

a

m

n

o

p q

x

y

Rem. Set ⊇ { a, m, y }

Problem with
Remembered Set

⎪Rem. Set⎪ ∝ ⎪Heap⎪

scan time could be worse than proportional to region size

Per-region
remembered sets?

(Garbage-First Collection
[Detlefs ’04])

Need Space Bounds!

✦ Garbage-First “Points-into remembered sets”

✦ Unacceptable O(N2) worst-case space cost

Compute
Summary Sets
Just in Time

a

m

n

o

p q

x

y

This summary set ⊇ { &a[1], &a[3], &y[0] }

Summary Sets

✦ Does it work?

✦ Popular objects / regions

✦ Space cost

Problem #1: Popularity

✦ Many locations may point to one object

✦ (or group of objects co-located in same region)

✦ Summary set will be LARGE!

Problem #2: Space

✦ Maintaining precise summary sets for every
region at all times is unrealistic

✦ (takes too much time)

✦ Maintain imprecise summary sets throughout
execution?

✦ (no, that takes us back to the unacceptable
O(N2) bound of Garbage-First)

Key Insight:
Not all regions are

above average.

Popular Regions

✦ Unusually popular regions must be unusual.

✦ Don’t collect unusually popular regions!

✦ Wave off their summaries before completion!

✦ Solves both problems

Summarization: Amortized

✦ Constructing one summary set generally
involves scanning the entire heap.

✦ Not enough time to construct the next
summary set unless we start early, so

✦ Start early!

✦ Amortize the effort!

✦ Construct summary sets for many regions at
once during one incremental scan.

Summarization Cycle

R1

R2 R3 R4 S5 S6 S7 S8 S9

F10F11F12F13F14

U15

U1

UNFILLED FILLED

READY SUMMARIZING

Summarization Cycle

R2 R3 R4 S5 S6 S7 S8 S9

F10F11F12F13F14

U15

U2U1

UNFILLED FILLED

READY SUMMARIZING

Summarization Cycle

R3 R4 S5 S6 S7 S8 S9

F10F11F12F13F14

U15

U3U2U1

UNFILLED FILLED

READY SUMMARIZING

Summarization Cycle
UNFILLED FILLED

READY SUMMARIZING

R4 S5 S6 S7 S8 S9

F10F11F12F13F14F15

U15

U3U2U1

Summarization Cycle

S5 S6 S7 S8 S9

F10F11F12F13F14F15U4

U3

U2U1

ready!

UNFILLED FILLED

READY SUMMARIZING

Summarization Cycle

R5 R6 R7 R8R9

F10F11F12F13F14F15U4

U3

U2U1

summarize!

UNFILLED FILLED

READY SUMMARIZING

Summarization Cycle

R5 R6 R7 R8R9 S15 S14 S12 S11 S10

F13U4

U3

U2U1

UNFILLED FILLED

READY SUMMARIZING

Summarization Cycle

R1

R2 R3 R4 S5 S6 S7 S8 S9

F10F11F12F13F14F15

U15

U16U1

summarize!

ready!

UNFILLED FILLED

READY SUMMARIZING

What about the
popular regions?

More Accurate Picture

R1

R2 R3 R4 S5 S6 S7 S8 S9

P2P8P10F11F12F13

U13

U14U1

summarize!

ready!

UNFILLED FILLED

READY

POPULAR

SUMMARIZING

Cyclic Garbage
May Cross

Region Boundaries

How to collect cycles?

✦ Use Snapshot-at-the-Beginning (SATB)
[Yuasa’90] to refine remembered set and
summary sets.

✦ Also ensures popular regions won’t hold onto
other regions’ objects forever!

Refinement via Snapshot

a

m

n

o

p q

x

y

Refinement via Snapshot

a

m

n

o

p q

x

y

what if (a) were unreachable and in a
region with popular objects?

Before Refinement

a

MW

m

n

o

p q

x

y

After Refinement

a

MW

m

n

o

p q

x

y

(still popular;
not collected)

(still collected; far
more reclaimed)

Implementation

Larceny

✦ Scheme (IEEE/ANSI/R5RS/R6RS)

✦ Built for compiler and GC research

✦ Interchangeable collectors

✦ stop-and-copy

✦ generational

✦ Full control; enforce system invariants and
implement specialized write-barriers

Larceny Regional GC

✦ Added dynamic region allocation

✦ Modified write-barrier for SATB marker

✦ Modified Cheney core

✦ Update remembered set, marker state, etc

✦ Summary sets

Read Felix’s
Dissertation!

Evaluation

Larceny Benchmarks

✦ Standard set of 68 R6RS benchmarks

✦ Can regional collector compete with
generational?

✦ Near-worst-case benchmarks

✦ Is regional collector scalable?

✦ How bad are the worst-case bounds?

Representative
Benchmarks

✦ Compared to Larceny’s generational collector:

✦ regional GC is 12% slower overall

✦ stop-and-copy GC is 23% slower

Near-worst-case
Benchmarks

✦ 5gcbenchJ:24 (not 1gcbenchJ:18)

✦ 400permJ:9:30:1

✦ 1000queueJ:1000000:50

✦ 1000pueueJ:1000000:50:50

Longest GC Pause

gcbench perm queue pueue

Scheme stop© 2.94 3.44 4.62 4.74

Scheme generational 3.13 3.23 4.28 4.45

Java generational 2.78 2.93 3.24 3.32

Java concurrent m/s 15.45 0.50 0.45 5.94

Java garbage-first 2.13 4.68 4.29 5.84

Scheme regional 0.12 0.13 0.09 0.21

Compared to G1

Pause times?

Compared to G1

Pause times? Better!

Compared to G1

Pause times?

MMU?

Better!

Compared to G1

Pause times?

MMU?

Better!

Better!

Compared to G1

Pause times?

MMU?

Throughput?

Better!

Better!

Compared to G1

Pause times?

MMU?

Throughput?

Better!

Better!

Varies.

Larceny v0.98b1

www.larcenists.org

http://www.larcenists.org
http://www.larcenists.org

Related Work
(fundamental)

✦ Generational GC [Lieberman&Hewitt ’83]

✦ Generation scavenging [Ungar ’84]

✦ Scalability 1 & 3 [Blelloch&Cheng ’99]

✦ MMU [Cheng&Blelloch ’01]

✦ Concurrent refinement [Detlefs et al ’02]

✦ Garbage-first [Detlefs et al ’04]

✦ Older-first [Clinger&Hansen ’97, Stefanovic et al.
’02, Hansen&Clinger ’02]

Related Work
(inspirations)

✦ MarkCopy windows [Sachindran&Moss’03]

✦ Parallel Incremental Compaction [Ben-Yitzhak et
al ’02]

✦ Metronome [Bacon et al ‘03]

✦ Pauseless GC, C4 [Click et al ’05, Tene et al ’11]

Related Work
(implementations)

Future Work

✦ Scalability of other algorithms

✦ SATB marking and summarization could be
concurrent with the mutator

✦ VMs other than Larceny

Conclusion

✦ Scalability is important

✦ no fiddling (∃∀ instead of ∀∃)

✦ achievable: regional collector

✦ Novel, elegant solutions for popularity & float

✦ Evaluated performance on representative and
near-worst-case benchmarks

thanks

www.larcenists.org

http://www.larcenists.org
http://www.larcenists.org

