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Abstract

Regional garbage collection is scalable, with theoreticakt-case
bounds for gc latency, MMU, and throughput that are indepahd

of mutator behavior and the volume of reachable storageioRaly
collection improves upon the worst-case pause times and MMU
seen in most other general-purpose collectors, includargape-
first and concurrent mark/sweep collectors.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage¥ Processors—Memory management (garbage collection)

General Terms  Algorithms, Design, Performance

Keywords scalable, real-time, regional garbage collection

1. Introduction

Some applications cannot tolerate long interruptions edusy
garbage collection. The frequency and/or duration of dated in-
terruptions can be reduced by using generational, paratiecur-
rent, incremental, real-time, or reference-countingembirs, but
those technologies are generally unable to guarantee akjeov
hard bound on the duration of gc-related interruptions ietaegal-
purpose collector without making some assumptions abotstomu
behavior and/or the volume of reachable storage.

Figure 1 lists the longest gc pause for four unusually gc-
intensive benchmarks that offer a fair comparison betwaea and
Scheme. The garbage-first and concurrent mark/sweep twolec
of Oracle’s OpenJDK Server VM are state-of-the-art incretake
collectors that were designed to reduce gc pauses, but btitbse
collectors resort to full collections when necessary totgem out
of trouble. That's why their pause times are worse than theeSe
VM'’s default collector on about half of the benchmarks shaan
Figure 1.

Most of the so-called real-time garbage collectors mustibed
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gc-related pauses, independent of application and progilesj17,
28]. Thisregional collector is now available in Larceny v0.98b1.
As seen in Figure 1, Larceny’s regional collector delivers
bounded gc latency even for near-worst-case synthetichipesuds
that force most other incremental collectors to perforn ¢ol-
lections. On three of the four benchmarks shown in that figure
Larceny with its regional collector consumes less cpu tihent
Java with its garbage-first or concurrent mark/sweep cualtec
As with other incremental collectors, Larceny’s regionallec-
tor sacrifices some throughput. Across a standard set of i6&nse
benchmarks, Larceny v0.98b1 runs about 12% slower oveyedl (
ometric mean) with its regional collector than with its ddfayen-
erational collector. Even so, the regional collector usudeéliv-
ers better throughput than Larceny’s stop&copy collecidrpse
overall throughput is about 23% slower than the defauleobtir’s.
Section 8 reports these results in greater detail.

2. Contributions

Although this paper is based on Felix Klock’s doctoral ditat@on,
which was completed in January of 2011 [28], we report on an
implementation of the regional collector that was releases:
months later and performs better than Klock’s prototype.

Our previous paper, published in 2009 at terkshop on
Scheme and Functional Programmijrdgefined our notion of scal-
ability and sketched a proof of our main theorem [17]. To supp
that proof, we also gave a high-level description of regigasbage
collection.

In this paper, we describe the algorithm and our implemantat
of it in more detail. We summarize its throughput for a staddzet
of Scheme benchmarks and also present detailed timingsepau
times, and graphs of the minimum mutator utilization foresaV
near-worst-case benchmarks that we have rewritten togedair
comparisions with Java. These benchmarks allow us to campar

to the behavior of some specific embedded system, so they can-OUr regional collector with Oracle’s Garbage-First (G1)extor,

not provide hard real-time guarantees independent of egifuin
and problem size [18]. Reference counting does not colladtac
garbage, so general-purpose implementations that useemete
counting do not collect cyclic garbage unless they incatgoean
auxiliary phase or garbage collector, and the pause tinreth&
auxiliary method are unlikely to be bounded [27].

In this paper, we report on the performance of a generalgzerp
garbage collector that has a provable fixed bound on theidoratt

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copeesar made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

DLS’11, October 24, 2011, Portland, Oregon, USA.
Copyright© 2011 ACM 978-1-4503-0939-4/11/10. . . $10.00

which was not available at the time of our previous paper.
We also discuss the recent C4 collector, and have expanded ou
discussion of other related work.

2.1 Cautionary note concerning “region”

Our use of the term “region” comes from the original paper on
generational garbage collection [31].

Regional garbage collection is not related to region-baseoh-
ory management [22, 39, 40]. Tofte-style region-based nmgmo
management is a static strategy, and cannot guaranteenheniy
worst-case bounds on space that are stated in Theorem 1 below

3. Scalability

Regional garbage collectiois a scalable variant of generational
garbage collection [17, 28]. Theorem 1 below, whose procf the

Ihttp://www.larcenists.org/



longest gc pause (seconds)
system gc technology 5gcbenchJ:24 permJ queued puelied
Scheme (Larceny v0.98b1) regional 12 13 .09 .21
Scheme (Larceny v0.98b1) generational 3.13 3.23 4.28 4.45
Scheme (Larceny v0.98b1) stop&copy 2.94 3.44 4.62 4.74
Java (OpenJDK 19.0-b09)  default (same as parallel?) 3.02 3.07 3.00 3.31
Java (OpenJDK 19.0-b09)  parallel gc 2.78 2.93 3.24 3.32
Java (OpenJDK 19.0-b09)  garbage-first (G1) 2.13 4.68 4.29 5.84
Java (OpenJDK 19.0-b09)  concurrent mark/sweef 15.45 .50 45 5.94

Figure 1. Longest gc pause time (in seconds) observed for four nestwase benchmarks. If the size of heap memory is reduc@%y
the concurrent mark/sweep collector’s longest pause timreases to 10 seconds or more on all four benchmarks. SaerS&c

main result of our previous paper, guarantees non-triviebteti-

cal worst-case bounds for space, collection pauses, anidnomim
mutator utilization (explained in Section 4.1). The spa@({n),
wheren is the volume of reachable storage, and the duration of col-
lection pauses is bounded by a fixed constant that is indepéod

the application and the volume of reachable storage.

Most garbage collectors cannot guarantee those scajabilit
properties. Conventional generational collectors do moetthose
properties because they must occasionally perform a flidcton
that takes time proportional to live storage, and mutat@ratons
are normally excluded during that collection.

Our proof of Theorem 1 was the first to guarantee simultane-
ous, non-trivial, and mutator-independent bounds for spaallec-
tion latency, and minimum mutator utilization [17, 28]. ltight
be possible to prove similar theorems for a few (though nié}t al
of the so-called real-time collectors, but those collextsacrifice
some throughput even for programs that allocate littleagerand
generate little or no garbage. To understand why, note fiegtany
scalable general-purpose collector must be able to mowvectsh)j
otherwise there would be no theoretical worst-case bourfdagn
mentation, hence no theoretical worst-case bound on tie oht
heap space to reachable storage. Real-time collectorgrtbnt
objects generally use a read barrier, which may be implesdent
in hardware using memory protection or in software by anaextr
level of indirection through a handle or forwarding pointeéead
barriers degrade amortized performance on all progranis [18

Real-time collectors that attempt to move objects with@ing
aread barrier generally use mutual exclusion to prevennihtator
from running while the collector is moving objects, and wuje
to limit the work performed by the collector while the mutaie
stopped. That approach works for some programs, but ruasaint
problem withpopular objectsdefined as objects that are referenced

4. Scalable collection: space, time, MMU

The overheads of garbage collection involve both spaceiar t

The space overhead includézating garbagewhich is defined
as objects on the application’s heap that are unreachablieake
not yet been reclaimed by the collector. For example, a geioeal
collector's remembered set may contain references to tbibat
are otherwise unreachable, causing those objects (andbjaltte
reachable from them!) to be retained across many parti&col
tions. A collector isscalablewith respect to space if and only if its
worst-case memory overhead, including floating garbag@(3)
whereP is the peak reachable heap storage.

The time overhead degrades bdkioughputand responsive-
ness Degraded throughput increases an application’s totalingn
time. Degraded responsiveness may take the form of longepaus
while the garbage collector runs and the mutator doesn’may
take the form of intervals in which the mutator’s share of hiae
resources is so puny as to annoy users or fail to satisfytireal-
guarantees.

4.1 Evaluating responsiveness: pauses and MMU

One measure of responsiveness is the maximum pause time ob-
served when an application is run. Although maximum pause ti
is an intuitive and important metric, it can be misleading:uBers,
a densely packed series of short pauses with hardly any onaiet
tivity between two adjacent pauses may be indistinguighébin
a single long pause.

In the garbage collection community, the application paogr
excluding the garbage collector is regarded as a mutatamepso
that runs in coroutining fashion with the garbage collattayo-
cess. For any fixed interval of time, theutator utilizationduring
that interval is defined as the percentage of that intervafhiich

by many other objects. When a popular object is moved, and no the mutator has control. For any fixed time resolution rtigimum

read barrier is used, all references to the popular object toel
updated to point to the new location of the object. Since tiig a
priori bound on the number of references to the popular object is
the size of the heap, the theoretical collection latencyisounded
and the collector is not scalable.

Our regional collector never moves popular objects. In,fact
the regional collector never even tries to collect the smegions
that contain popular objects. That works because the reghumt
contain popular objects can never account for more than adsali
fraction of the heap. That was the key insight and chief ngwef
regional garbage collection and of our proof of Theorem 1.

In this paper, we build upon the theoretical focus of our prev
ous paper by answering some pragmatic questions: Are tloe the
retical worst-case bounds good enough to offer practicaéfie
How well does our regional collector perform on near-waase
benchmarks when compared to other incremental collectbos?
well does the regional collector perform on typical progs&@m

mutator utilization(MMU) is defined as the smallest mutator uti-
lization over a set of time intervals whose length is equath®
resolution.

For any given execution of a program, the MMU so defined will
be a function that maps positive time resolutions to pesged.
One might think that MMU would be a monotonically increasing
function of the length of the resolution interval, but thatriot
so: Consider a program in which the mutator runs for exactly 1
second, the garbage collector for exactly 1 second, and sAton
a resolution of 2 seconds, the MMU is 50%, which is also the
average mutator utilization. At a resolution of 3 secondsyéver,
the MMU is only 33%: There are 3-second intervals in which the
garbage collector runs twice, for a total of 2 seconds. Iregan
however, the MMU does tend to increase as the interval iseiea
approaching (but not reaching) the average mutator uiitiza

In this work we distinguish between two kinds of MMQb-
served MMUis measured empirically during the executions of
some specific set of benchmarks, as in Figures 2 afth8oret-
ical worst-case MMUs the infimum (greatest lower bound) of ob-
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Figure 2. Observed minimum memory utilization (MMU) for an
allocation-intensive benchmark of moderate difficulty.
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Figure 3. Observed MMU for an extremely gc-intensive bench-
mark. Larceny’'s stop&copy collector delivers essentiatigro
MMU at all intervals through 10 seconds, and Larceny’s ganer
tional collector does only slightly better.

served MMUs over all possible executions of all possiblechen
marks; it cannot be derived via measurement.

A collector is scalable with respect to responsivenesseifeth
exists a resolution at which the theoretical worst-case Mbkbn-
zero, independent of the amount of live heap storage andtonuta
behavior.

5. Regional collectors are scalable

We say that a garbage collector is scalable if and only if #rgo-
tees non-trivial theoretical worst-case bounds for sptice, col-
lection pauses, and minimum mutator utilization that adepen-
dent of application behavior and problem size.

The following theorem states that the regional collectccial-
able. (The non-trivial lower bound for MMU implies a nonvisil
lower bound for throughput.)

Theorem 1. There exist positive constants, c1, c2, andcs such
that, for every mutator, no matter what the mutator does:

1. GC pauses are independent of heap sigds larger than the
worst-case time between mutator actions.

2. Minimum mutator utilization is bounded below by constant
that are independent of heap size: within every intervalroét
longer than3cy, the MMU is greater tham; .

3. Memory usage i®(P), whereP is the peak volume of reach-
able objects: the total memory used by the mutator and collec
tor is less tharez P + c3.

Proof. See our previous paper [17] and the more complete proof in
Klock’s doctoral dissertation [28]. |

Note that the constants, c1, c2, andcs are completely inde-
pendent of the mutator. Hence

Corollary 2. If a mutator operation executes@(1) mutator time,
then the operation will execute @(1) elapsed time so long as the
worst-case space stated by Theorem 1 is available.

Prior to our proof of Theorem 1, no general-purpose garbage
collector had ever been proved to have all of those noratrand
mutator-independent bounds on worst-case performance.

Theorem 1 asserts the existence of a set of fixed bounds that
apply to all mutators and to all volumes of reachable staritge
3V quantifier structure is stronger than e structure of theorems
that assert the existence of mutator-dependent boundaBity
is stronger than mutator-dependent bounds in exactly the sey
that uniform continuity is stronger than pointwise contipu

With most general-purpose collectors, simple user opmrati
such as clicking in a scroll bar might allocate just enoughesge to
trigger a full collection, which takes time proportionalreachable
storage. Since there is agriori bound on reachable storage, there
is noa priori bound on the time required to scroll a page; clicking
in the scroll bar may give users the impression that the prodras
locked up.

Corollary 2 and Figure 3 say that can’t happen with a regional
collector. The program may run very slowly, but it will ne\give
the impression of locking up completely.

6. Regional collection: how it works

The regional collector resembles a stop-the-world geiteraitcol-
lector. In place of generations that segregate objects bythg re-
gional collector maintains a set of relatively small regipall of
the same size. There is no strict correlation between arctibje
region and the object’s age. Only one region is collectedtahe.
(In most generational collectors, collecting a generatigplies the
simultaneous collection of all younger generations.)

The regional collector maintains a remembered set, a ¢ialiec
of summary sets, and a snapshot structure. The remembedred se
keeps track of region-crossing references, summary sstslli
elements of the remembered set that will be relevant to upmpm
collections, and the snapshot structure accumulates abéith
information that will be used to eliminate unreachable nefiees
from the remembered set and summary sets.

6.1 Processes

The regional collector adds three distinct computatiomatesses
to those of the mutator:

* A snapshot-at-the-beginning marking process marks every o
ject that was reachable when the snapshot was initiated.

e A summarization process computes summary sets from the
remembered set.

e A collection process uses Cheney’s algorithm [13] to copy a
region’s reachable storage into some other region(s).

The marking and summarization processes run concurrently
or interleaved with the mutator processes. When the calect
process is executing, however, all other processes arerstsg.
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Figure 4. Regions cycle through a four-stage circular pipeline.

The collection process moves objects (to eliminate frageren
tion) and updates pointers from outside the collected regi@oint
to the newly relocated objects. It also reclaims unreachstorage.

Because the collection process moves objects, all other pro
cesses must be suspended during a collection. Those pescass
free to proceed only at the end of collection, after the ctiba
process has updated all pointers to point to the new locatidn
objects.

The collection process is thanly process that moves objects.
Because the mutator, summarization, and marking procdessst
move objects, they cannot interfere with other processesis/of
the heap, even if they execute concurrently.

When a region is collected, its summary set contains all ef th
locations within uncollected regions that hold pointets itme col-
lected region. (See Figure 5 and Section 6.8.) Those lotatiust
be updated after the collection so they will point to the &ting
objects’ new addresses. The summary sets for uncollectgohse
must be updated as well, because any locations they may bave c
tained that lie within the collected region now corresponchéw
locations within relocated objects. Similarly, the matkjprocess’s
mark stack and all of the mutator’s call stacks must be ugddtiee
mark stack is discussed in Section 6.6. Mutator stacks aceistsed
in Section 6.15.

6.2 Classification of regions

Figure 4 shows the regions’ normal pipeline in which an engpty
partially empty region is used as part of the to-space for an€h
collection, becomes full, is eventually selected for sumnadion,
becomes ready for collection after its summary set has been c
puted, and becomes empty once again after its reachablet®bje
have been copied into one or more unfilled regions.

The small solid rectanges represent regions. The thin arrow
represent an individual region’s transition from one stai@nother.
The thin curved arrow shows a ready region being emptied by
a collection, after which the now-empty region is reclassdifas
unfilled. The thin straight arrow shows a region being resifeesd
after it has been filled by objects evacuated from a collectgibn.

The triangular hats on some regions represent summarysets.
summary set that is still under construction has a dashdoheut
The broad arrows represent transitions of multiple regianthe
beginning or end of a summarization cycle. At the beginnihg o
summarization cycle, some of the filled regions (usuallydghes
that were filled least recently) become candidates for suiaara

tion. Their summary sets are computed by scanning the remem-
bered set for the entire heap, which takes a while. When shieir-
mary sets are complete, those regions become ready foctotie
While the summary sets are being computed, ready regions are
collected one at a time, at a rate determined by mutatorigctiv
The summarization process must complete its computatidheof
summary sets before or soon after the last ready region has be
collected. Sections 6.12 and 6.13 discuss the schedulmgjreints
in more detail.

6.3 Remembered set

We bound the pause time by collecting one region indepehdeit
all others. To enable this, the mutator and collector coltatively
maintain aremembered sehat contains every location (or object)
that points from one region to a different region. (Standgedera-
tional collectors maintain a similar invariant, but theemrembered
sets don't have to keep track of locations that point fromngmr
to older objects.)

The mutator can create region-crossing pointers by allmtat
(as when an argument toons resides within a different region
from the resulting pair) or by assignment. The collector carate
region-crossing pointers by moving an object from one med®
another.

The remembered set may suffer from two distinct kinds of
imprecision:

e The remembered set may contain entries for locations octshje
that are no longer reachable by the mutator.

¢ The remembered set may contain entries for locations octshje
that are still reachable, but no longer contain a pointet tha
points from one region to a different region.

The remembered set shown in Figure 5 is precise.

6.4 Remembered set representation

The regional collector represents its remembered set @sitayd
table, hash table, or some other data structure that reapmisst
one entry for each location in the heap.

The size of the remembered set's representation is therefor
bounded by the size of the heap, even though the remembaeiied se
imprecise. Without that bound, the collector would not bedaiole.

6.5 Write barrier

Assignments and other stores into pointer fields of objectstmo
through awrite barrier that updates the remembered set to account
for the assignment.

To support snapshot-at-the-beginning marking, the redicol-
lector uses a Yuasa-style write barrier [42] that logs titihees: (1)
the location on the left hand side of the assignment, (2y&sipus
contents, and (3) its new contents. Because the write bantist
log the previous contents, our regional collector cannetausrrite
barrier that writes directly to a card table (even if the rethered
set happens to be represented by a card table). In our berichma
results, the cost of that write barrier is charged to the toutaut
itis a hidden cost of regional collection.

6.6 Snapshots

To keep the remembered set’s imprecision within fixed bouads
periodic snapshot-at-the-beginning marking procesementally
constructs a snapshot of the heap at a particular point i tim
Incremental snapshot construction is a standard techidje
It classifies every object as (1) unreachable at the timeeo$ttap-
shot, (2) reachable at the time of the snapshot, or (3) attdcater
the time of the snapshot. Objects in category (3) are coreside
reachable, but their fields need not be traced by the markatise
those fields cannot affect reachability as of the time of tiapshot.
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Figure 5. Relationship between the points-out-of remembered settengoints-into summary sets.

When the marking process completes, it removes unreachable

locations from the remembered set. This reduces floatingpgar

In particular, it ensures that the nodes of any cyclic stmed that

become unreachable will be removed from the remembered set.
While the marking process is constructing the snapshogihm

tains amark staclof objects that have been marked but have not yet

been traced.

6.7 Mark stack and snapshot

The marking process marks every location it pushes, andrneve
pushes a marked location, so no location appears more tlwn on
in the mark stack, and the size of the mark stack is boundetey t
size of the heap.

The number of pointers in the mark stack that need to be ugdate
after a collection is bounded by the size of the collectedoreg
To update those pointers in time proportional to region,size
mark stack is divided into per-region substacks, thosetaoks are
threaded through the single mark stack, and the collectdates
only the substack that's relevant to the collected region.

Two more subtle issues arise with the mark stack and snapshot

. Collections must not change the state of objects withérstiap-
shot. In particular, unmarked objects must remain unmarked

. Even if an object on the mark stack has become globally un-
reachable (so one might think the collector could reclaisn it
storage), that object may hold the only reference the mgrkin
process will encounter to a different object that remairbgl
ally reachable via some path that was introduced by assign-
ments performed after the snapshot was initiated. (For an ex
ample, see Section 4.6.1 of Klock’s dissertation [28].)

To resolve that second issue, the regional collector usesgrk
substack for the collected region as an additional sourceats
for that collection. The collector doe®t use the entire mark stack
or snapshot as roots; if it did, the collector would not bdatua,
and garbage that was live when the snapshot was initiatetdwou
not be collected.

6.8 Summary sets

A typical generational collector will scan most (or all) a$ ire-
membered set when collecting one of its younger generatinres
worst case, the size of that remembered set can be proprtmn
the size of the heap, so that approach is not scalable.

To collect a region independently of other regions, theszbtr
must know all locations in uncollected regions that may hpadht-
ers into the collected region. This set of locations isgshmmary
setfor the collected region.

Figure 5 shows a heap with 7 regions, an object graph with 6
region-crossing pointers, and 3 summary sets (the triandpaits).

6.9 Popular regions

In the worst case, a region’s summary set could consist dbcd-
tions outside the region. If that region were collected byimg its
reachable objects, then it would take too long to updatecatitprs
to those objects, and the collector would not be scalable.

To solve that problem, the regional collector defingsopular
region as a region whose summary set is larger thdimes the
region sizeR, and never collects a popular region.

It is impossible for all regions to be more popular than agera
That mathematical observation generalizes to the follgyémma.

Lemma 3. If S > 1, then the fraction of regions that are popular
is no greater thari/S.

Example: If S = 8, then at most2.5% of the regions are popular,
and not collecting those popular regions adds at m2$t% to the
size of the heap.

That is the key insight that allows regional collection to be
scalable. To achieve scalability, it is also necessary &pkie
imprecision of the remembered set within fixed bounds (wiéch
accomplished by the marking process) and to abandon cotigputa
of any summary sets whose size exceeds the threshold $et by

Popularity is not permanent. Regions that go uncollected be
cause of their current popularity will still be considered €ollec-
tion in some later full cycle. Regions that lose their popsiatus
will eventually be collected.

6.10 Amortized summary set construction and wave-off

Recall that the portion of the remembered set associatédanit-
gion consists of all locations within that region that maynpout-
side the region. (In other words, we uspaints-out-ofemembered

2Oracle’s garbage-first collector doesn't collect its papukgions either,
but it does move popular objects to a dedicated space [28]elworst case,
updating all pointers to a popular object during that migratan take time
proportional to the heap size, so the garbage-first coliéstnot scalable.
Our regional collector does not move popular objects at all.



set. An imprecis@oints-intoremembered set, such as the one used
in Oracle’s garbage-first collector, would not be scalaldeanse
its worst-case size is quadratic in the heap size.)

To compute a region’s summary set, the summarization psoces
must scan the points-out-of remembered set for the entiap,he
which takes time proportional to the size of the heap. Jusine
computation of individual summary sets would not be scalabl

To keep both time and space under control, the summarization
process

e amortizes the cost in time by attempting to compute summary
sets for a fixed fractioft/ F; of the heap’s regions during a full
pass over the remembered set, but

e abandons the computation of any summary set whose size ex-

ceeds the fixed wave-off threshaofd

Scalability therefore requires careful scheduling. Thagiaeal
collector must compute summary sets and collect regionsat-a
ficiently high rate, but must not compute summary sets andaol
regions so rapidly that the mutator’s share of the machiogsir
below the minimum mutator utilization guaranteed by Theode
The regional collector’'s scheduling of summarization antlec-
tion is constrained by the same lemmas that were used to fisove
scalability:

Lemma 4. If N is the total heap size anf the size of each region
(so N/R is the number of regions), and a summarization cycle
finishes before the mutator’s activity during the cycle caneed
c¢N, wherec satisfies

-1 S

If the number of usable summary sets computed by a summa- then the summarization cycle will compute usable summéasyee

rization cycle exceeds a fixed fractiai(Fy F») of the number of
regions in the heap, then the summarization process canse su
pended until the number of ready regions drops below thatifna
6.11 Parameters
The key parameters (and their values in Larceny v0.98b1):

¢ R (5 megabytes) is the fixed region size.

® S (8) is the wave-off threshold.

e 1/F1 (1/2) is the fraction of the heap for which the summariza-

tion process attempts to build summary sets during each sum-

marization cycle.
e 1/F> (1/2) is the fraction of those attempts that must succeed.

The values of these parameters are hard-wired into the nagio
collector. If they were allowed to vary depending on the rtarta
or heap size, then the collector would not be scalable. They a
parameters only in the sense that several different setsrafieter
values are known to yield a scalable collector [28].

6.12 Proof-driven scheduling

If the mutator weren't executing concurrently (or intexled) with
the summarization pass, then the number of abandoned symmar
sets would be limited by Lemma 3, and the fractibf( F1F5)
would be guaranteed by choosing the fixed paramgteso that
1/(F1F2) < 1/F1 — 1/S. Unfortunately, mutators can perform
allocations and assignments that increase or reduce thberush
pointers that point into a region being summarized, makirey p
viously unpopular regions popular or previously populagioas
unpopular. To achieve scalability, the regional collectoist there-
fore arrange for the summarization process to finish befaertu-
tator can perform enough allocation and/or assignmentsetept
summary sets from being computed 1oi( F1 F») of the regions.

< -1
N VT
at least
LN
FF, R
regions.

Lemma 5. Let D be the total size of the previously constructed
summary sets at the start of a new summarization cycle. If the
summarization cycle finishes before the mutator's actiditying

the cycle can exceedV, then the number of summary sets that
remain undiscarded throughout the entire cycle (becausk ize
never exceed§’R) is at least

1
(F1 Py

Both lemmas above are proved in Chapter 5 of Klock’s disser-
tation [28].

These lemmas establish fixed upper bounds on mutator activ-
ity that must be enforced by scheduling. To achieve scatyhihe
scheduler must also enforce a fixed lower bound on mutati-act
ity. The proof of Theorem 1 establishes that these (and ptixed
upper and lower bounds can be satisfied simultaneously gy car
ful scheduling of mutator, marking, summarization, andemion
processes.

6.13 Mutator activity

Allocation and assignment are the only operations that bange
the object graph, so mutator activity is reckoned as the stim o
words allocated and word-sized assignments performed.

During eachfull cycle the regional collector collects every
region that existed at the beginning of the cycle unlessdbmn is
empty or its summary set would be too large.

The collector’s overhead during each full cycl&$P),* where
P is the peak live storage. Furthermore the collector's czadh
can be spread fairly evenly over the collections that aréopeed

After the summary sets have been computed, they must be keptduring that full cycle.

up to date by scanning newly allocated objects and by prowess
assignments logged by the write barfidf.an updated summary
set were to grow too large, then it would take too long to updat
all of its locations when the associated region is collectest
the collector would not be scalable. The regional collechust
therefore discard any summary set whose size grows to exceed
fixed thresholdS’ > S. To retain scalability, the regional collector
must consume summary sets (by collecting regions) fastgmtmi
prevent too many summary sets from being discarded.

3Keeping the summary sets up to date with oflly1) amortized time per
allocation/assignment requires sophisticated datatanes combined with
fixed bounds on the size of a summary set and on the number ategpd
that are necessary. For details, see Klock’s disserta®igh [

To achieve scalability, the regional collector must areafgy
the mutator activity within each full cycle to k&(P) (hence pro-
portional to the collector’s overhead) and for that mutatctivity
to be spread fairly evenly over the collections that areqraréd
during that full cycle.

At the beginning of each full cycle, the regional collectat-c
culates the mutator activity to be performed within that &yicle,
and uses that calculated value to schedule its own act\asewell
as those of the mutator throughout that full cycle. Thatdakion
involves an inverse load factdr, which expresses the desired ratio

4©(P) means the overhead is proportionalRdo within fixed lower and
upper bounds for the constant of proportionality. To adhisealability,
those fixed bounds must be independent of the mutator.



between heap size and peak reachable storagd. £of < 3 and
collector parameter§ = 8, F}, = 2, andF> = 2, the mutator ac-
tivity per full cycle is(L — 1) P, where the peak reachable storage
P is estimated by taking the maximum over all completed mark-
ing cycles. (By bounding the mutator’s activity since coatjgn of

the previous marking cycle, the collector ensures that theeat
amount of live storage cannot be greater than a fixed cortitees
that estimate [17, 28].)

Because the mutator activity per full cycledg P), and the col-
lector’s overhead per full cycle is al§)( P), scalability is achieved
by any reasonably even distribution (to within fixed bourafd)oth
mutator activity and collector overhead amongst the regiaad
collections that will be performed within the full cycle.

6.14 Nursery

Like most generational collectors, the regional collectocates
all objects within a relatively smahlursery Small nurseries have
little impact on worst-case performance, and the scatsbés-
serted by Theorem 1 can be achieved without using a nursery. F
most programs, however, the nursery greatly improves thergbd
MMU and overall efficiency of the regional collector.

6.15 Mutator stacks

The regional collector assumes mutator stacks are cotetrfrom
heap-allocated objects of bounded size, as though all &tacles
were allocated on the heap [1]. Although mixed stack/haaper
mental stack/heap, Hieb-Dybvig-Bruggeman, and Chenethen
MTA strategies are often used [16, 25], their bounded stackes
can be regarded as special parts of the nursery. That alloes a
gional collector to deal with them as though the mutator wses
pure heap strategy.

6.16 Fragmentation

As justified in Section 10, the regional collector assumésatb are
limited to some sizen < R. The Cheney algorithm ensures that
worst-case fragmentation in collected regions is less thaR.

7. Larceny’s regional collector

We have implemented a regional collector for Larceny, anémp
mentation of Scheme [23]For Larceny v0.98b1, the regional col-
lector’'s nursery size is 1 MB, and its other parameter vahres
stated in Section 6.11.

Larceny’s regional collector does not exploit the poterdan-
currency of our design: The marking and summarization [Fees
couldrun concurrently with the mutator but do not.

The marking and summarization procesaesincremental. In-
cremental marking is performed before most minor collextidhe
summarization process scans the outgoing pointers forarayor
two regions at a time, and those scans are scheduled at tlygdine
of Larceny’s software timer interrupts.

8. Performance

For this paper, we compared Larceny’s regional collectaormo

of Larceny’s other garbage collectors on a standard setloéi8e
benchmarks. We also compared Larceny’s collectors to thbse
Oracle’s OpenJDK Server VM (build 19.0-b09), in 32-bit mpde
on four near-worst-case synthetic benchmarks that werigros

to provide a fair comparison between Scheme and Java. Lydscen
collectors were run with an inverse load factor lof= 2.5, and

the JVM’s collectors were run with heap sizes that approséha
the peak memory used by Larceny. We ran these benchmarks o
an otherwise unloaded Intel Core 2 Duo (with two processmeg)o

Shttp://www.larcenists.org/

running at 3 GHz, with 3.8 gigabytes of RAM, under Linux Ubunt
9.10.

The numbers reported here are for a single run. For the relgion
collector, that run was selected by taking the run whose marxi
pause time was the median of five consecutive runs. For thase fi
runs, the pause times ranged from 83 to 129 gadénchJ), 114
to 192 ms permJ), 81 to 114 ms queueJ), and 211 to 214 ms
(pueueJ). With all of the collectors, overall timings and memory
usage were consistent across multiple runs to within a few pe
cent. Pause times and MMU varied quite a bit more, especially
with collectors that performed some but not many full cdilees.
With Java’s concurrent mark/sweep collector, full coliess can
be induced by reducing the heap size, resulting in at leaspanse
of 10 to 32 seconds on every benchmark. For all other coliecto
the pause times and MMU for the runs reported here were tiypica
and close to the median and average.

8.1 Representative benchmarks

To estimate performance on typical Scheme programs, wehbenc
marked three of Larceny’s garbage collectors on the 68 R6RS
benchmarks that are distributed with Larceny’s source éadese
benchmarks were written by various people, collected byl Wil
Clinger and Marc Feeley, and translated into R6 Scheme by Ab-
dulaziz Ghuloum and Will Clinger.

For those standard benchmarks, Larceny runs about 12%rslowe
overall (geometric mean) with the regional collector thaithw
Larceny’s default generational collector. About half oéttslow-
down is attributable to the regional collector’s use of a dgabyte
nursery instead of the generational collector’s 4-megabytsery.

When Larceny’s stop&copy collector is used instead of its-ge
erational collector, Larceny runs about 23% slower oveiak
therefore conclude that, for a typical mix of Scheme program
the regional collector is likely to have better throughphart the
stop&copy collector.

The most comparable figures that we have seen are for the
Gambit implementation of Scheme. Compared to Gambit’s non-
generational collector, Gambit’s real-time collector Inagre over-
head on every benchmark [29]. From that, we conclude that
Larceny’s regional collector has better throughput tham@itis
real-time collector. On the other hand, the worst-case @énses
observed for Larceny’s regional collector are nowhere asahort
as the 15 millisecond maximum observed for Gambit’s reakti
collector.

On the standard benchmarks, the regional collector’s kinge
pause time was .24 seconds. For that benchmark, the gemedati
collector reported a pause of .72 seconds. Across all 68hbenc
marks, the generational collector’s longest pause wasse&ands.

8.2 GC-intensive synthetic benchmarks

To compare the near-worst-case performance of Larcenilisceo
tors against collectors available for Java, we used fouaexdinar-
ily gc-intensive synthetic benchmarks. All four benchnzavkere
carefully written to provide fair comparisons between the tan-
guages. (Among other things, this involved using Schemé&rec
with two elements when lists or pairs would be more idiomdtic
Java, an object that encapsulates two reference fieldsely lik
occupy 4 words of memory, as does a 2-element vector in Lgrcen
but Larceny’s pairs occupy only 2 words each.)

gcbenchl] is a scalable version of the synthetic benchmark
originally written in Java by John Ellis, Pete Kovac, and Blan
Boehm. That original benchmark correspondsgebenchJ: 18 of

"the scalable benchmark. We benchmarkgdbenchJ: 24, which

Shttp://www.larcenists.org/benchmarks2009.html



interval in milliseconds

cpu time (sec) elapsed| memory (MB) | # of gc pauses| pause time (sec
language gctechnology| total mark+summ+gd time total heap | total full | avg full max
Scheme regional 726 121+34+287 757 | 1871 1775| 158800 0 12
Scheme  generational | 372 188 380 | 1867 1863| 39756 276 3.13
Scheme stop&copy 419 233 428 | 1881 1877 711 711 .33 2.94
Java default 133 67 116 1751 541 20 1.13  3.02
Java parallel 131 65 114 1838 530 21 1.00 2.78
Java garbage-first | 245 128 154 2147 1514 5 1.44 2.13
Java concurrent m/s 672 526 450 2144 6228 5 13.64 15.45
Figure 6. Timings and memory usage for tBgcbenchJ: 24 benchmark.
cpu time (sec) elapsed| memory (MB) | # of gc pauseg pause time (sec
language gctechnology| total mark+summ+gd time total heap | total full avg full  max
Scheme regional 160 41+5+87 164 | 2272 2106| 8239 0 .13
Scheme  generational 73 54 74 | 1632 1628| 2059 27 3.23
Scheme  stop&copy 54 38 55 | 1633 1629 26 26 145 344
Java default 136 130 90 2097 71 22 221 3.07
Java parallel 131 125 82 2097 68 22 214 293
Java garbage-first | 198 183 112 2334 | 726 5 419 4.68
Java concurrent m/s 221 141 148 2356 | 430 0 .50
Figure 7. Timings and memory usage for tA@0permJ:9:30:1 benchmark.
cpu time (sec) elapsed| memory (MB) | # of gc pauseg pause time (sec
language gctechnologyl total mark+summ+gd time total heap | total full | avgfull max
Scheme  regional 186 63+1+102 191 | 1925 1826 15260 0 .09
Scheme  generational 98 86 101 | 2044 2039| 3815 47 4.28
Scheme  stop&copy 85 72 88 | 2051 2047 48 48 1.49 4.62
Java default 239 233 180 1771 124 42 2.49  3.00
Java parallel 238 232 176 1771 124 42 249 324
Java garbage-first | 345 334 205 1992 | 1049 12 427 4.29
Java concurrent m/s 456 270 326 1989 667 0 .45
Figure 8. Timings and memory usage for thé00queueJ: 1000000:50 benchmark.
cpu time (sec) elapsed| memory (MB) | # of gc pauseg pause time (sec
language gctechnologyl total mark+summ+gd time total heap | total full | avgfull max
Scheme regional 320 97+48+156 326 | 1924 1829 15260 0 21
Scheme generational | 107 95 110 | 2044 2039| 3815 47 4.45
Scheme stop&copy 920 76 92 | 2054 2049 48 48 1.58 4.74
Java default 254 248 189 1771 124 42 271 331
Java parallel 251 245 190 1771 124 42 273 332
Java garbage-first | 445 432 254 1992 | 1151 12 532 5.84
Java concurrent m/s 444 275 318 1989 667 0 5.94
Figure 9. Timings and memory usage for thé00pueueJ: 1000000:50:50 benchmark.
observed MMU for 1gcbenchJ:24 observed MMU for 400permJ:9:30:1
g 15 regional g 15 regional s
5 10 generational -~ 5 10 generational -————- S
s 5 Stop-and-copy ............. = 5 Stop-and-copy ............. ‘/
= 0 . , = 0 . /
100 1000 10000 100 1000 10000
interval in milliseconds interval in milliseconds
observed MMU for 1000queueJ:1000000:50 observed MMU for 1000pueueJd:1000000:50:50
g regiona: g regiona:
= enerational -———— = enerational -————
g 5 stgp—and—copy ............. f g 5 stgp—and—copy ............. ',-’;:
= 0 . ; ) = 0 W
100 1000 10000 100 1000 10000

interval in milliseconds

Figure 10. Observed MMU for four near-worst-case synthetic benchmark




performs 5 iterations scaled for a 2 gigabyte heap (thermld32
megabytes timeg24~18).

400permJ:9:30:1 consists of 400 iterations that each generate
a list (built out of 2-element vectors in Scheme) of all petations
of 9 items, with much shared structure, without generating a
garbage, storing the results into a circular buffer of capaR0;
garbage is created only when the oldest list in the buffexptaced
by the most recent copy.

1000queueJ:1000000:50 allocates 1000 lists (built out of 2-
element vectors in Scheme), with one million elements s li
storing them in a circular buffer that holds 50 lispaeueJ is the
same agjueueJ except that every element of the lists is a popular
object. With1000pueueJ:1000000:50:50, there are 50 popular
objects, one for each list.

Figures 6 through 9 show the results. Larceny’s regiondtcel
tor has the shortest maximum pause times, by far, mostlyuseca
it's the only collector that never performs a full collectio

The regional collector normally uses about as much memory as

Larceny’s generational collector, but it uses more memaryhe
permJ benchmark.

Incremental and/or concurrent collection comes at a pfioe:
these extremely gc-intensive benchmarks, the regionkdatol de-
livers roughly half the throughput of Larceny’s generaéibool-
lector. Oracle’s garbage-first and concurrent mark/sweépators
also provide less throughput than the JVM’s default cotlect

Oracle’s JVM outperforms Larceny gftbenchJ because that
benchmark rewards large nurseries and fast write barrigrs.
other three benchmarks penalize large nurseries. (Nasséri-
prove average-case performance, but large nurseries pstew
space in the worst case because they don'’t help with thelleed-
objects that dominate truly extreme benchmarks.) On thoset
benchmarks, Larceny with its regional collector consuress tpu
time than Java with the garbage-first or concurrent marldpwe
collectors. If the regional collector's marking and sumixation
processes were executed in a separate thread, then thealegit
lector’s total elapsed time for two of those benchmarks dde
better than the elapsed time for the garbage-first and cotur
mark/sweep collectors, and its elapsed time for the thirdldvbe
comparable.

8.3 Observed MMU

As shown by Figures 3 and 10, the regional collector delivers
positive minimum mutator utilization at resolutions for i the
JVM collectors and Larceny’s other collectors have zero MMU
The MMUs seen in Figures 3 and 10 are appallingly low, but
these graphs are for near-worst-case benchmarkuear J, the
JVM’s default collector delivers aaveragemutator utilization of
only 2.5%. The minimum mutator utilization is always lesarth
the average, and the MMU observed over short intervals iallysu
much less than the average. Larceny’s generational an&cbpy

as we would like, it improves upon the worst-case MMU of previ
ous collectors.

9. Related work
9.1 Generational garbage collection

Generational collection was introduced by Lieberman anditie
[31]. A simplification of that design was first implemented bg-
gar, who also introduced a nursery [41]. Most modern geiterait
collectors resemble Ungar’s, but our regional collectdesign is
more similar to that of Lieberman and Hewiitt.

9.2 Heap partitioning
Our regional collector partitions the heap and collects ghes

independently.

Bishop’s collector allows single areas to be collected jreae
dently; his work targets Lisp machines and requires hareweap-
port [8].

The Garbage-Firstcollector inspired many aspects of our re-
gional collector [20]. Unlike the garbage-first collectahich uses
a points-into remembered set that could grow very large istv
case, we use a points-out-of remembered set with pointssumn-
maries that are bounded in size. The garbage-first collectmes
popular objects; we do not. The garbage-first collector tssoal-
able in the sense defined by Sections 4 and 5: It does not offer
worst-case bounds on space usage, pause times, or MMU.

The Mature Object Spacéa.k.a.Train) algorithm uses a fixed
policy for choosing which regions to collect [26]. To ensamn-
pleteness, it migrates objects across regions until a ctmplcle
is isolated to its own train and then collected. This gradnigjra-
tion can lead to significant problems with floating garbagar O
marking process eliminates floating garbage in collectgibns,
while our handling of popular regions provides an elegadtravel
solution that bounds the worst-case storage requiremenésMa-
ture Object Space collector is not scalable.

The Beltwaycollector uses heap partitioning and clever infras-
tructure to enable flexible selection of collection pol&ida com-
mand line options [9]. Its policy selection is expressiveuwgh to
emulate the behavior of semi-space, generational, renadef-
first, and deferred-older-first collectors. Appropriateickes for
mutator-specific policy parameters improved performancé&d%,
10%, and up to 35% over a fixed generational collection policy
The Beltway system forces users to choose between incrahwent
complete collection, so the Beltway collector is not sckdab

The MarkCopycollector breaks the heap down into fixed sized
windowg[36]. During a collection pause, it builds up a remembered
set for each window and then collects each window in turn. An

collectors are able to achieve an MMU of 5% at 10 seconds for extension interleaves the mutator process with individviabow
pueueJ only because Larceny’s compiler generates machine code copy collection; one could see our design as taking the neptaf
that's about twice as slow as the machine code generatedeby th moving the marking process and remembered set construaffion

JVM.

The paraffins benchmark may be even more severe than
pueuelJ. With the inverse load factor of = 2.5 that was used
to generate Figure 3, Larceny’s stop&copy collector desivan
average mutator utilization of only 0.25%, while the getiersl
and regional collectors come in at about 4%.

The regional collector’s pause times and MMU are more pre-
dictable than the pause times and MMU of the other collectors
With the other collectors, you can't be sure they won't perfa
full collection at some inopportune moment.

General-purpose garbage collectors have poor worst-chiig.M
Although the regional collector’'s worst-case MMU is not a®d

of the critical path of the collector.

The Parallel Incremental Compaction algorithm also has-sim
larities to our approach [7]. It selects an area of the heapltect,
and then concurrently builds a summary for that area. Itatpoi
into summary set is constructed by tracing the whole hedbera
than by maintaining a points-out-of remembered set as irirour
plementation of the regional collector. (That techniquelldavork
with the regional collector as well, and might be a welconneysi-
fication. Klock evaluated that alternative in his disséotaf28].)
Their goals are also different from ours: Their techniquésaith-
cremental compaction to a mark-sweep collector, while veeige
utilization and space guarantees in a copying collector.



9.3 Older-first garbage collection

Our regional collector, like older-first collectors, tertdsgive ob-
jects more time to die before attempting to collect them B3,

9.4 Bounding collection pauses

There is a broad body of research on bounding the pause time

introduced by garbage collection [2, 5, 6, 11, 12, 24, 32, #2]
particular, Blelloch and Cheng proved worst-case boundpdase
times and space usage (but not MMU) [10].

S.

Interleaving the summarization and marking processestivith
mutator requires a write barrier, which we piggy-back onbasaier
that was already in place to support generational collecfldis
is similar to how Printezis and Detlefs, building on the wark
Boehmet al, merged the overhead of maintaining concurrency
related invariants with the overhead of maintaining getamal
invariants [11, 34].

10. Future work

Bounding individual pause times is not enough; one must also As implemented in Larceny v0.98b1, the regional collectaeri-

ensure that the mutator can accomplish a sufficient work doetw
the pauses, keeping the processor utilization as high ashbes

leaves the marking and summarization processes with thatanut
Summarization is scheduled at the fine grain of Larceny's\so

Cheng and Blelloch addressed this issue by inventing the MMU timer interrupts, while marking is scheduled for minor ections

metric [14]. Their paper presented albservedViIMU for a parallel
real-time collector, not a theoretical worst-case MMU.

9.5 Collection scheduling

Metronome is a hard real-time collector [4]. It can use eitirae-

or work-based collection scheduling, and is mostly non-impyv
but will copy objects to reduce fragmentation. Metronomsoal
requires a read barrier. Although the average overhead ef th
read barrier is only 4%, mutator utilization is said to beited

to about 50% [15]. More significantly, Metronome’s guaraute

and the processing of write barrier logs. Both marking andrea-
rization could be done concurrently with the mutator, whiakuld
improve throughput on programs that do not fully utilize ab-
cessor cores.

The regional collector's Cheney collections can themsehe
parallelized, but that is essentially independent of theigife

We assume object sizes are bounded, so every object will fit
into a region. Because we control both the compiler and the ru
time representations of objects, we can choose repregsmstabat
break extremely large objects into pieces of bounded sizch&Ve

bounds on utilization and space usage depend upon the egcura not yet done that, but expect it to be routine.

of application-specific parameters. The original set obpaaters
has been extended to provide tighter bounds on collectioa énd
space overhead [3]. Because its parameters depend upomuthe m
tor, Metronome is not scalable in the sense defined by Seaction
and 5.

Similarly, Robertz and Henriksson described a collectat tle-
pends on a supplied schedule to provide real-time collgotor
formance [35]. Unlike Metronome, it schedules work accogdi
to collection cycle times rather than finer grained quant&e L

11. Conclusions

Regional garbage collection is scalable, with theoretieaist-case
bounds for gc latency, MMU, and throughput that are indepahd
of mutator behavior and the volume of reachable storage.
Regional collection improves upon the worst-case pausestim
and MMU seen in most other general-purpose collectorsydicy
the garbage-first and concurrent mark/sweep collectorat ifin

Metronome, it provides a proven bound on space usage (that de provement involves some sacrifice of throughput, but regjionl-

pends on the accurary of application-specific parameters).

In contrast to those designs, our regional collector isattal
It provides worst-case guarantees independent of mutatauor.
On the other hand, our regional collector cannot guararaese
times or MMU in the millisecond range. Our regional colleci®
mostly copying, has no read barrier, and uses work-basemiatc
ing to drive the collection policy.

9.6

There are many treatments of concurrent collectors, imotudn
algorithm described in 1978 [21].

The Continuously Concurrent Compacting Collector (C4) is a
generational form of The Pauseless GC Algorithm [15, 38hBo
of those collectors have goals similar to ours, but attaekpifob-
lem differently. Where we avoid read barriers entirely,staol-
lectors implement a read barrier in custom hardware or biacep
ing Linux’s virtual memory system with a custom virtual memo
system that greatly reduces the cost of using stock memary pr
tection hardware to trap reads from problematic locatidtris.un-
clear whether those collectors are scalable in the senseeddfiy

Incremental and concurrent collection

Sections 4 and 5. Their observed pause times and MMU are im-
pressive, but no proofs have been published and no claims hav

been made concerning their theoretical worst-case MMU acesp
requirements.

In our collector, reclamation of dead object state is not per
formed concurrently with the mutator, but the activity oé tium-
marization and marking processes could be.

Our summarization process was inspired by the performance

of Detlefs’ implementation of a concurrent thread that redidata
within the remembered set to reduce the effort spent towsrals-
ning older objects for roots during a collection pause [19].

lection still tends to deliver better throughput than Langce non-
generational collector.
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