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Abstract
Regional garbage collection is scalable, with theoreticalworst-case
bounds for gc latency, MMU, and throughput that are independent
of mutator behavior and the volume of reachable storage. Regional
collection improves upon the worst-case pause times and MMU
seen in most other general-purpose collectors, including garbage-
first and concurrent mark/sweep collectors.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection)

General Terms Algorithms, Design, Performance

Keywords scalable, real-time, regional garbage collection

1. Introduction
Some applications cannot tolerate long interruptions caused by
garbage collection. The frequency and/or duration of gc-related in-
terruptions can be reduced by using generational, parallel, concur-
rent, incremental, real-time, or reference-counting collectors, but
those technologies are generally unable to guarantee a provable
hard bound on the duration of gc-related interruptions in a general-
purpose collector without making some assumptions about mutator
behavior and/or the volume of reachable storage.

Figure 1 lists the longest gc pause for four unusually gc-
intensive benchmarks that offer a fair comparison between Java and
Scheme. The garbage-first and concurrent mark/sweep collectors
of Oracle’s OpenJDK Server VM are state-of-the-art incremental
collectors that were designed to reduce gc pauses, but both of those
collectors resort to full collections when necessary to getthem out
of trouble. That’s why their pause times are worse than the Server
VM’s default collector on about half of the benchmarks shownin
Figure 1.

Most of the so-called real-time garbage collectors must be tuned
to the behavior of some specific embedded system, so they can-
not provide hard real-time guarantees independent of application
and problem size [18]. Reference counting does not collect cyclic
garbage, so general-purpose implementations that use reference
counting do not collect cyclic garbage unless they incorporate an
auxiliary phase or garbage collector, and the pause times for that
auxiliary method are unlikely to be bounded [27].

In this paper, we report on the performance of a general-purpose
garbage collector that has a provable fixed bound on the duration of
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gc-related pauses, independent of application and problemsize [17,
28]. Thisregionalcollector is now available in Larceny v0.98b1.1

As seen in Figure 1, Larceny’s regional collector delivers
bounded gc latency even for near-worst-case synthetic benchmarks
that force most other incremental collectors to perform full col-
lections. On three of the four benchmarks shown in that figure,
Larceny with its regional collector consumes less cpu time than
Java with its garbage-first or concurrent mark/sweep collectors.

As with other incremental collectors, Larceny’s regional collec-
tor sacrifices some throughput. Across a standard set of 68 Scheme
benchmarks, Larceny v0.98b1 runs about 12% slower overall (ge-
ometric mean) with its regional collector than with its default gen-
erational collector. Even so, the regional collector usually deliv-
ers better throughput than Larceny’s stop&copy collector,whose
overall throughput is about 23% slower than the default collector’s.
Section 8 reports these results in greater detail.

2. Contributions
Although this paper is based on Felix Klock’s doctoral dissertation,
which was completed in January of 2011 [28], we report on an
implementation of the regional collector that was releasednine
months later and performs better than Klock’s prototype.

Our previous paper, published in 2009 at theWorkshop on
Scheme and Functional Programming, defined our notion of scal-
ability and sketched a proof of our main theorem [17]. To support
that proof, we also gave a high-level description of regional garbage
collection.

In this paper, we describe the algorithm and our implementation
of it in more detail. We summarize its throughput for a standard set
of Scheme benchmarks and also present detailed timings, pause
times, and graphs of the minimum mutator utilization for several
near-worst-case benchmarks that we have rewritten to provide fair
comparisions with Java. These benchmarks allow us to compare
our regional collector with Oracle’s Garbage-First (G1) collector,
which was not available at the time of our previous paper.

We also discuss the recent C4 collector, and have expanded our
discussion of other related work.

2.1 Cautionary note concerning “region”

Our use of the term “region” comes from the original paper on
generational garbage collection [31].

Regional garbage collection is not related to region-basedmem-
ory management [22, 39, 40]. Tofte-style region-based memory
management is a static strategy, and cannot guarantee the dynamic
worst-case bounds on space that are stated in Theorem 1 below.

3. Scalability
Regional garbage collectionis a scalable variant of generational
garbage collection [17, 28]. Theorem 1 below, whose proof was the

1http://www.larcenists.org/



longest gc pause (seconds)
system gc technology 5gcbenchJ:24 permJ queueJ pueueJ
Scheme (Larceny v0.98b1) regional .12 .13 .09 .21
Scheme (Larceny v0.98b1) generational 3.13 3.23 4.28 4.45
Scheme (Larceny v0.98b1) stop&copy 2.94 3.44 4.62 4.74
Java (OpenJDK 19.0-b09) default (same as parallel?) 3.02 3.07 3.00 3.31
Java (OpenJDK 19.0-b09) parallel gc 2.78 2.93 3.24 3.32
Java (OpenJDK 19.0-b09) garbage-first (G1) 2.13 4.68 4.29 5.84
Java (OpenJDK 19.0-b09) concurrent mark/sweep 15.45 .50 .45 5.94

Figure 1. Longest gc pause time (in seconds) observed for four near-worst-case benchmarks. If the size of heap memory is reduced by20%,
the concurrent mark/sweep collector’s longest pause time increases to 10 seconds or more on all four benchmarks. See Section 8.

main result of our previous paper, guarantees non-trivial theoreti-
cal worst-case bounds for space, collection pauses, and minimum
mutator utilization (explained in Section 4.1). The space is O(n),
wheren is the volume of reachable storage, and the duration of col-
lection pauses is bounded by a fixed constant that is independent of
the application and the volume of reachable storage.

Most garbage collectors cannot guarantee those scalability
properties. Conventional generational collectors do not have those
properties because they must occasionally perform a full collection
that takes time proportional to live storage, and mutator operations
are normally excluded during that collection.

Our proof of Theorem 1 was the first to guarantee simultane-
ous, non-trivial, and mutator-independent bounds for space, collec-
tion latency, and minimum mutator utilization [17, 28]. It might
be possible to prove similar theorems for a few (though not all!)
of the so-called real-time collectors, but those collectors sacrifice
some throughput even for programs that allocate little storage and
generate little or no garbage. To understand why, note first that any
scalable general-purpose collector must be able to move objects;
otherwise there would be no theoretical worst-case bound onfrag-
mentation, hence no theoretical worst-case bound on the ratio of
heap space to reachable storage. Real-time collectors thatmove
objects generally use a read barrier, which may be implemented
in hardware using memory protection or in software by an extra
level of indirection through a handle or forwarding pointer. Read
barriers degrade amortized performance on all programs [18].

Real-time collectors that attempt to move objects without using
a read barrier generally use mutual exclusion to prevent themutator
from running while the collector is moving objects, and attempt
to limit the work performed by the collector while the mutator is
stopped. That approach works for some programs, but runs into a
problem withpopular objects, defined as objects that are referenced
by many other objects. When a popular object is moved, and no
read barrier is used, all references to the popular object must be
updated to point to the new location of the object. Since the only a
priori bound on the number of references to the popular object is
the size of the heap, the theoretical collection latency is unbounded
and the collector is not scalable.

Our regional collector never moves popular objects. In fact,
the regional collector never even tries to collect the smallregions
that contain popular objects. That works because the regions that
contain popular objects can never account for more than a bounded
fraction of the heap. That was the key insight and chief novelty of
regional garbage collection and of our proof of Theorem 1.

In this paper, we build upon the theoretical focus of our previ-
ous paper by answering some pragmatic questions: Are the theo-
retical worst-case bounds good enough to offer practical benefit?
How well does our regional collector perform on near-worst-case
benchmarks when compared to other incremental collectors?How
well does the regional collector perform on typical programs?

4. Scalable collection: space, time, MMU
The overheads of garbage collection involve both space and time.

The space overhead includesfloating garbage, which is defined
as objects on the application’s heap that are unreachable but have
not yet been reclaimed by the collector. For example, a generational
collector’s remembered set may contain references to objects that
are otherwise unreachable, causing those objects (and all objects
reachable from them!) to be retained across many partial collec-
tions. A collector isscalablewith respect to space if and only if its
worst-case memory overhead, including floating garbage, isO(P )
whereP is the peak reachable heap storage.

The time overhead degrades boththroughputand responsive-
ness. Degraded throughput increases an application’s total running
time. Degraded responsiveness may take the form of long pauses
while the garbage collector runs and the mutator doesn’t, ormay
take the form of intervals in which the mutator’s share of machine
resources is so puny as to annoy users or fail to satisfy real-time
guarantees.

4.1 Evaluating responsiveness: pauses and MMU

One measure of responsiveness is the maximum pause time ob-
served when an application is run. Although maximum pause time
is an intuitive and important metric, it can be misleading: To users,
a densely packed series of short pauses with hardly any mutator ac-
tivity between two adjacent pauses may be indistinguishable from
a single long pause.

In the garbage collection community, the application program
excluding the garbage collector is regarded as a mutator process
that runs in coroutining fashion with the garbage collection pro-
cess. For any fixed interval of time, themutator utilizationduring
that interval is defined as the percentage of that interval inwhich
the mutator has control. For any fixed time resolution, theminimum
mutator utilization(MMU) is defined as the smallest mutator uti-
lization over a set of time intervals whose length is equal tothe
resolution.

For any given execution of a program, the MMU so defined will
be a function that maps positive time resolutions to percentages.
One might think that MMU would be a monotonically increasing
function of the length of the resolution interval, but that is not
so: Consider a program in which the mutator runs for exactly 1
second, the garbage collector for exactly 1 second, and so on. At
a resolution of 2 seconds, the MMU is 50%, which is also the
average mutator utilization. At a resolution of 3 seconds, however,
the MMU is only 33%: There are 3-second intervals in which the
garbage collector runs twice, for a total of 2 seconds. In general,
however, the MMU does tend to increase as the interval increases,
approaching (but not reaching) the average mutator utilization.

In this work we distinguish between two kinds of MMU.Ob-
served MMU is measured empirically during the executions of
some specific set of benchmarks, as in Figures 2 and 3.Theoret-
ical worst-case MMUis the infimum (greatest lower bound) of ob-
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Figure 2. Observed minimum memory utilization (MMU) for an
allocation-intensive benchmark of moderate difficulty.
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Figure 3. Observed MMU for an extremely gc-intensive bench-
mark. Larceny’s stop&copy collector delivers essentiallyzero
MMU at all intervals through 10 seconds, and Larceny’s genera-
tional collector does only slightly better.

served MMUs over all possible executions of all possible bench-
marks; it cannot be derived via measurement.

A collector is scalable with respect to responsiveness if there
exists a resolution at which the theoretical worst-case MMUis non-
zero, independent of the amount of live heap storage and mutator
behavior.

5. Regional collectors are scalable
We say that a garbage collector is scalable if and only if it guaran-
tees non-trivial theoretical worst-case bounds for space,time, col-
lection pauses, and minimum mutator utilization that are indepen-
dent of application behavior and problem size.

The following theorem states that the regional collector isscal-
able. (The non-trivial lower bound for MMU implies a non-trivial
lower bound for throughput.)

Theorem 1. There exist positive constantsc0, c1, c2, andc3 such
that, for every mutator, no matter what the mutator does:

1. GC pauses are independent of heap size:c0 is larger than the
worst-case time between mutator actions.

2. Minimum mutator utilization is bounded below by constants
that are independent of heap size: within every interval of time
longer than3c0, the MMU is greater thanc1.

3. Memory usage isO(P ), whereP is the peak volume of reach-
able objects: the total memory used by the mutator and collec-
tor is less thanc2P + c3.

Proof. See our previous paper [17] and the more complete proof in
Klock’s doctoral dissertation [28].

Note that the constantsc0, c1, c2, andc3 are completely inde-
pendent of the mutator. Hence

Corollary 2. If a mutator operation executes inO(1) mutator time,
then the operation will execute inO(1) elapsed time so long as the
worst-case space stated by Theorem 1 is available.

Prior to our proof of Theorem 1, no general-purpose garbage
collector had ever been proved to have all of those non-trivial and
mutator-independent bounds on worst-case performance.

Theorem 1 asserts the existence of a set of fixed bounds that
apply to all mutators and to all volumes of reachable storage. Its
∃∀ quantifier structure is stronger than the∀∃ structure of theorems
that assert the existence of mutator-dependent bounds: Scalability
is stronger than mutator-dependent bounds in exactly the same way
that uniform continuity is stronger than pointwise continuity.

With most general-purpose collectors, simple user operations
such as clicking in a scroll bar might allocate just enough storage to
trigger a full collection, which takes time proportional toreachable
storage. Since there is noa priori bound on reachable storage, there
is noa priori bound on the time required to scroll a page; clicking
in the scroll bar may give users the impression that the program has
locked up.

Corollary 2 and Figure 3 say that can’t happen with a regional
collector. The program may run very slowly, but it will nevergive
the impression of locking up completely.

6. Regional collection: how it works
The regional collector resembles a stop-the-world generational col-
lector. In place of generations that segregate objects by age, the re-
gional collector maintains a set of relatively small regions, all of
the same size. There is no strict correlation between an object’s
region and the object’s age. Only one region is collected at atime.
(In most generational collectors, collecting a generationimplies the
simultaneous collection of all younger generations.)

The regional collector maintains a remembered set, a collection
of summary sets, and a snapshot structure. The remembered set
keeps track of region-crossing references, summary sets list all
elements of the remembered set that will be relevant to upcoming
collections, and the snapshot structure accumulates reachability
information that will be used to eliminate unreachable references
from the remembered set and summary sets.

6.1 Processes

The regional collector adds three distinct computational processes
to those of the mutator:

• A snapshot-at-the-beginning marking process marks every ob-
ject that was reachable when the snapshot was initiated.

• A summarization process computes summary sets from the
remembered set.

• A collection process uses Cheney’s algorithm [13] to copy a
region’s reachable storage into some other region(s).

The marking and summarization processes run concurrently
or interleaved with the mutator processes. When the collection
process is executing, however, all other processes are suspended.



Figure 4. Regions cycle through a four-stage circular pipeline.

The collection process moves objects (to eliminate fragmenta-
tion) and updates pointers from outside the collected region to point
to the newly relocated objects. It also reclaims unreachable storage.

Because the collection process moves objects, all other pro-
cesses must be suspended during a collection. Those processes are
free to proceed only at the end of collection, after the collection
process has updated all pointers to point to the new locations of
objects.

The collection process is theonly process that moves objects.
Because the mutator, summarization, and marking processesdo not
move objects, they cannot interfere with other processes’ views of
the heap, even if they execute concurrently.

When a region is collected, its summary set contains all of the
locations within uncollected regions that hold pointers into the col-
lected region. (See Figure 5 and Section 6.8.) Those locations must
be updated after the collection so they will point to the surviving
objects’ new addresses. The summary sets for uncollected regions
must be updated as well, because any locations they may have con-
tained that lie within the collected region now correspond to new
locations within relocated objects. Similarly, the marking process’s
mark stack and all of the mutator’s call stacks must be updated. The
mark stack is discussed in Section 6.6. Mutator stacks are discussed
in Section 6.15.

6.2 Classification of regions

Figure 4 shows the regions’ normal pipeline in which an emptyor
partially empty region is used as part of the to-space for a Cheney
collection, becomes full, is eventually selected for summarization,
becomes ready for collection after its summary set has been com-
puted, and becomes empty once again after its reachable objects
have been copied into one or more unfilled regions.

The small solid rectanges represent regions. The thin arrows
represent an individual region’s transition from one stateto another.
The thin curved arrow shows a ready region being emptied by
a collection, after which the now-empty region is reclassified as
unfilled. The thin straight arrow shows a region being reclassified
after it has been filled by objects evacuated from a collectedregion.

The triangular hats on some regions represent summary sets.A
summary set that is still under construction has a dashed outline.
The broad arrows represent transitions of multiple regionsat the
beginning or end of a summarization cycle. At the beginning of a
summarization cycle, some of the filled regions (usually theones
that were filled least recently) become candidates for summariza-

tion. Their summary sets are computed by scanning the remem-
bered set for the entire heap, which takes a while. When theirsum-
mary sets are complete, those regions become ready for collection.

While the summary sets are being computed, ready regions are
collected one at a time, at a rate determined by mutator activity.
The summarization process must complete its computation ofthe
summary sets before or soon after the last ready region has been
collected. Sections 6.12 and 6.13 discuss the scheduling constraints
in more detail.

6.3 Remembered set

We bound the pause time by collecting one region independently of
all others. To enable this, the mutator and collector collaboratively
maintain aremembered setthat contains every location (or object)
that points from one region to a different region. (Standardgenera-
tional collectors maintain a similar invariant, but their remembered
sets don’t have to keep track of locations that point from younger
to older objects.)

The mutator can create region-crossing pointers by allocation
(as when an argument tocons resides within a different region
from the resulting pair) or by assignment. The collector cancreate
region-crossing pointers by moving an object from one region to
another.

The remembered set may suffer from two distinct kinds of
imprecision:

• The remembered set may contain entries for locations or objects
that are no longer reachable by the mutator.

• The remembered set may contain entries for locations or objects
that are still reachable, but no longer contain a pointer that
points from one region to a different region.

The remembered set shown in Figure 5 is precise.

6.4 Remembered set representation

The regional collector represents its remembered set usinga card
table, hash table, or some other data structure that recordsat most
one entry for each location in the heap.

The size of the remembered set’s representation is therefore
bounded by the size of the heap, even though the remembered set is
imprecise. Without that bound, the collector would not be scalable.

6.5 Write barrier

Assignments and other stores into pointer fields of objects must go
through awrite barrier that updates the remembered set to account
for the assignment.

To support snapshot-at-the-beginning marking, the regional col-
lector uses a Yuasa-style write barrier [42] that logs threethings: (1)
the location on the left hand side of the assignment, (2) its previous
contents, and (3) its new contents. Because the write barrier must
log the previous contents, our regional collector cannot use a write
barrier that writes directly to a card table (even if the remembered
set happens to be represented by a card table). In our benchmark
results, the cost of that write barrier is charged to the mutator, but
it is a hidden cost of regional collection.

6.6 Snapshots

To keep the remembered set’s imprecision within fixed bounds, a
periodic snapshot-at-the-beginning marking process incrementally
constructs a snapshot of the heap at a particular point in time.

Incremental snapshot construction is a standard technique[42].
It classifies every object as (1) unreachable at the time of the snap-
shot, (2) reachable at the time of the snapshot, or (3) allocated after
the time of the snapshot. Objects in category (3) are considered
reachable, but their fields need not be traced by the marker because
those fields cannot affect reachability as of the time of the snapshot.



Figure 5. Relationship between the points-out-of remembered set andthe points-into summary sets.

When the marking process completes, it removes unreachable
locations from the remembered set. This reduces floating garbage.
In particular, it ensures that the nodes of any cyclic structures that
become unreachable will be removed from the remembered set.

While the marking process is constructing the snapshot, it main-
tains amark stackof objects that have been marked but have not yet
been traced.

6.7 Mark stack and snapshot

The marking process marks every location it pushes, and never
pushes a marked location, so no location appears more than once
in the mark stack, and the size of the mark stack is bounded by the
size of the heap.

The number of pointers in the mark stack that need to be updated
after a collection is bounded by the size of the collected region.
To update those pointers in time proportional to region size, the
mark stack is divided into per-region substacks, those substacks are
threaded through the single mark stack, and the collector updates
only the substack that’s relevant to the collected region.

Two more subtle issues arise with the mark stack and snapshot:

1. Collections must not change the state of objects within the snap-
shot. In particular, unmarked objects must remain unmarked.

2. Even if an object on the mark stack has become globally un-
reachable (so one might think the collector could reclaim its
storage), that object may hold the only reference the marking
process will encounter to a different object that remains glob-
ally reachable via some path that was introduced by assign-
ments performed after the snapshot was initiated. (For an ex-
ample, see Section 4.6.1 of Klock’s dissertation [28].)

To resolve that second issue, the regional collector uses the mark
substack for the collected region as an additional source ofroots
for that collection. The collector doesnot use the entire mark stack
or snapshot as roots; if it did, the collector would not be scalable,
and garbage that was live when the snapshot was initiated would
not be collected.

6.8 Summary sets

A typical generational collector will scan most (or all) of its re-
membered set when collecting one of its younger generations. In a
worst case, the size of that remembered set can be proportional to
the size of the heap, so that approach is not scalable.

To collect a region independently of other regions, the collector
must know all locations in uncollected regions that may holdpoint-
ers into the collected region. This set of locations is thesummary
setfor the collected region.

Figure 5 shows a heap with 7 regions, an object graph with 6
region-crossing pointers, and 3 summary sets (the triangular hats).

6.9 Popular regions

In the worst case, a region’s summary set could consist of allloca-
tions outside the region. If that region were collected by moving its
reachable objects, then it would take too long to update all pointers
to those objects, and the collector would not be scalable.

To solve that problem, the regional collector defines apopular
region as a region whose summary set is larger thanS times the
region sizeR, and never collects a popular region.2

It is impossible for all regions to be more popular than average.
That mathematical observation generalizes to the following lemma.

Lemma 3. If S > 1, then the fraction of regions that are popular
is no greater than1/S.

Example: If S = 8, then at most12.5% of the regions are popular,
and not collecting those popular regions adds at most12.5% to the
size of the heap.

That is the key insight that allows regional collection to be
scalable. To achieve scalability, it is also necessary to keep the
imprecision of the remembered set within fixed bounds (whichis
accomplished by the marking process) and to abandon computation
of any summary sets whose size exceeds the threshold set byS.

Popularity is not permanent. Regions that go uncollected be-
cause of their current popularity will still be considered for collec-
tion in some later full cycle. Regions that lose their popular status
will eventually be collected.

6.10 Amortized summary set construction and wave-off

Recall that the portion of the remembered set associated with a re-
gion consists of all locations within that region that may point out-
side the region. (In other words, we use apoints-out-ofremembered

2 Oracle’s garbage-first collector doesn’t collect its popular regions either,
but it does move popular objects to a dedicated space [20]. Inthe worst case,
updating all pointers to a popular object during that migration can take time
proportional to the heap size, so the garbage-first collector is not scalable.
Our regional collector does not move popular objects at all.



set. An imprecisepoints-intoremembered set, such as the one used
in Oracle’s garbage-first collector, would not be scalable because
its worst-case size is quadratic in the heap size.)

To compute a region’s summary set, the summarization process
must scan the points-out-of remembered set for the entire heap,
which takes time proportional to the size of the heap. Just-in-time
computation of individual summary sets would not be scalable.

To keep both time and space under control, the summarization
process

• amortizes the cost in time by attempting to compute summary
sets for a fixed fraction1/F1 of the heap’s regions during a full
pass over the remembered set, but

• abandons the computation of any summary set whose size ex-
ceeds the fixed wave-off thresholdS.

If the number of usable summary sets computed by a summa-
rization cycle exceeds a fixed fraction1/(F1F2) of the number of
regions in the heap, then the summarization process can be sus-
pended until the number of ready regions drops below that fraction.

6.11 Parameters

The key parameters (and their values in Larceny v0.98b1):

• R (5 megabytes) is the fixed region size.

• S (8) is the wave-off threshold.

• 1/F1 (1/2) is the fraction of the heap for which the summariza-
tion process attempts to build summary sets during each sum-
marization cycle.

• 1/F2 (1/2) is the fraction of those attempts that must succeed.

The values of these parameters are hard-wired into the regional
collector. If they were allowed to vary depending on the mutator
or heap size, then the collector would not be scalable. They are
parameters only in the sense that several different sets of parameter
values are known to yield a scalable collector [28].

6.12 Proof-driven scheduling

If the mutator weren’t executing concurrently (or interleaved) with
the summarization pass, then the number of abandoned summary
sets would be limited by Lemma 3, and the fraction1/(F1F2)
would be guaranteed by choosing the fixed parameterF2 so that
1/(F1F2) < 1/F1 − 1/S. Unfortunately, mutators can perform
allocations and assignments that increase or reduce the number of
pointers that point into a region being summarized, making pre-
viously unpopular regions popular or previously popular regions
unpopular. To achieve scalability, the regional collectormust there-
fore arrange for the summarization process to finish before the mu-
tator can perform enough allocation and/or assignments to prevent
summary sets from being computed for1/(F1F2) of the regions.

After the summary sets have been computed, they must be kept
up to date by scanning newly allocated objects and by processing
assignments logged by the write barrier.3 If an updated summary
set were to grow too large, then it would take too long to update
all of its locations when the associated region is collected, and
the collector would not be scalable. The regional collectormust
therefore discard any summary set whose size grows to exceeda
fixed thresholdS′

≥ S. To retain scalability, the regional collector
must consume summary sets (by collecting regions) fast enough to
prevent too many summary sets from being discarded.

3 Keeping the summary sets up to date with onlyO(1) amortized time per
allocation/assignment requires sophisticated data structures combined with
fixed bounds on the size of a summary set and on the number of updates
that are necessary. For details, see Klock’s dissertation [28].

Scalability therefore requires careful scheduling. The regional
collector must compute summary sets and collect regions at asuf-
ficiently high rate, but must not compute summary sets and collect
regions so rapidly that the mutator’s share of the machine drops
below the minimum mutator utilization guaranteed by Theorem 1.
The regional collector’s scheduling of summarization and collec-
tion is constrained by the same lemmas that were used to proveits
scalability:

Lemma 4. If N is the total heap size andR the size of each region
(so N/R is the number of regions), and a summarization cycle
finishes before the mutator’s activity during the cycle can exceed
cN , wherec satisfies

0 < c ≤
F2 − 1

F1F2

S −
S

N/R
− 1

then the summarization cycle will compute usable summary sets for
at least

1

F1F2

N

R
regions.

Lemma 5. Let D be the total size of the previously constructed
summary sets at the start of a new summarization cycle. If the
summarization cycle finishes before the mutator’s activityduring
the cycle can exceedcN , then the number of summary sets that
remain undiscarded throughout the entire cycle (because their size
never exceedsS′R) is at least

„

1

F1F2

−
D

NS′
−

c

S′

«

N

R

Both lemmas above are proved in Chapter 5 of Klock’s disser-
tation [28].

These lemmas establish fixed upper bounds on mutator activ-
ity that must be enforced by scheduling. To achieve scalability, the
scheduler must also enforce a fixed lower bound on mutator activ-
ity. The proof of Theorem 1 establishes that these (and other) fixed
upper and lower bounds can be satisfied simultaneously by care-
ful scheduling of mutator, marking, summarization, and collection
processes.

6.13 Mutator activity

Allocation and assignment are the only operations that can change
the object graph, so mutator activity is reckoned as the sum of
words allocated and word-sized assignments performed.

During eachfull cycle, the regional collector collects every
region that existed at the beginning of the cycle unless the region is
empty or its summary set would be too large.

The collector’s overhead during each full cycle isΘ(P ),4 where
P is the peak live storage. Furthermore the collector’s overhead
can be spread fairly evenly over the collections that are performed
during that full cycle.

To achieve scalability, the regional collector must arrange for
the mutator activity within each full cycle to beΘ(P ) (hence pro-
portional to the collector’s overhead) and for that mutatoractivity
to be spread fairly evenly over the collections that are performed
during that full cycle.

At the beginning of each full cycle, the regional collector cal-
culates the mutator activity to be performed within that full cycle,
and uses that calculated value to schedule its own activities as well
as those of the mutator throughout that full cycle. That calculation
involves an inverse load factorL, which expresses the desired ratio

4Θ(P ) means the overhead is proportional toP to within fixed lower and
upper bounds for the constant of proportionality. To achieve scalability,
those fixed bounds must be independent of the mutator.



between heap size and peak reachable storage. For1 < L ≤ 3 and
collector parametersS = 8, F1 = 2, andF2 = 2, the mutator ac-
tivity per full cycle is(L − 1)P , where the peak reachable storage
P is estimated by taking the maximum over all completed mark-
ing cycles. (By bounding the mutator’s activity since completion of
the previous marking cycle, the collector ensures that the current
amount of live storage cannot be greater than a fixed constanttimes
that estimate [17, 28].)

Because the mutator activity per full cycle isΘ(P ), and the col-
lector’s overhead per full cycle is alsoΘ(P ), scalability is achieved
by any reasonably even distribution (to within fixed bounds)of both
mutator activity and collector overhead amongst the region-sized
collections that will be performed within the full cycle.

6.14 Nursery

Like most generational collectors, the regional collectorallocates
all objects within a relatively smallnursery. Small nurseries have
little impact on worst-case performance, and the scalability as-
serted by Theorem 1 can be achieved without using a nursery. For
most programs, however, the nursery greatly improves the observed
MMU and overall efficiency of the regional collector.

6.15 Mutator stacks

The regional collector assumes mutator stacks are constructed from
heap-allocated objects of bounded size, as though all stackframes
were allocated on the heap [1]. Although mixed stack/heap, incre-
mental stack/heap, Hieb-Dybvig-Bruggeman, and Cheney-on-the-
MTA strategies are often used [16, 25], their bounded stack caches
can be regarded as special parts of the nursery. That allows are-
gional collector to deal with them as though the mutator usesa
pure heap strategy.

6.16 Fragmentation

As justified in Section 10, the regional collector assumes objects are
limited to some sizem < R. The Cheney algorithm ensures that
worst-case fragmentation in collected regions is less thanm/R.

7. Larceny’s regional collector
We have implemented a regional collector for Larceny, an imple-
mentation of Scheme [23].5 For Larceny v0.98b1, the regional col-
lector’s nursery size is 1 MB, and its other parameter valuesare
stated in Section 6.11.

Larceny’s regional collector does not exploit the potential con-
currency of our design: The marking and summarization processes
could run concurrently with the mutator but do not.

The marking and summarization processesare incremental. In-
cremental marking is performed before most minor collections. The
summarization process scans the outgoing pointers for onlyone or
two regions at a time, and those scans are scheduled at the finegrain
of Larceny’s software timer interrupts.

8. Performance
For this paper, we compared Larceny’s regional collector totwo
of Larceny’s other garbage collectors on a standard set of Scheme
benchmarks. We also compared Larceny’s collectors to thoseof
Oracle’s OpenJDK Server VM (build 19.0-b09), in 32-bit mode,
on four near-worst-case synthetic benchmarks that were designed
to provide a fair comparison between Scheme and Java. Larceny’s
collectors were run with an inverse load factor ofL = 2.5, and
the JVM’s collectors were run with heap sizes that approximated
the peak memory used by Larceny. We ran these benchmarks on
an otherwise unloaded Intel Core 2 Duo (with two processor cores)

5http://www.larcenists.org/

running at 3 GHz, with 3.8 gigabytes of RAM, under Linux Ubuntu
9.10.

The numbers reported here are for a single run. For the regional
collector, that run was selected by taking the run whose maximum
pause time was the median of five consecutive runs. For those five
runs, the pause times ranged from 83 to 129 ms (gcbenchJ), 114
to 192 ms (permJ), 81 to 114 ms (queueJ), and 211 to 214 ms
(pueueJ). With all of the collectors, overall timings and memory
usage were consistent across multiple runs to within a few per
cent. Pause times and MMU varied quite a bit more, especially
with collectors that performed some but not many full collections.
With Java’s concurrent mark/sweep collector, full collections can
be induced by reducing the heap size, resulting in at least one pause
of 10 to 32 seconds on every benchmark. For all other collectors,
the pause times and MMU for the runs reported here were typical
and close to the median and average.

8.1 Representative benchmarks

To estimate performance on typical Scheme programs, we bench-
marked three of Larceny’s garbage collectors on the 68 R6RS
benchmarks that are distributed with Larceny’s source code.6 These
benchmarks were written by various people, collected by Will
Clinger and Marc Feeley, and translated into R6 Scheme by Ab-
dulaziz Ghuloum and Will Clinger.

For those standard benchmarks, Larceny runs about 12% slower
overall (geometric mean) with the regional collector than with
Larceny’s default generational collector. About half of that slow-
down is attributable to the regional collector’s use of a 1-megabyte
nursery instead of the generational collector’s 4-megabyte nursery.

When Larceny’s stop&copy collector is used instead of its gen-
erational collector, Larceny runs about 23% slower overall. We
therefore conclude that, for a typical mix of Scheme programs,
the regional collector is likely to have better throughput than the
stop&copy collector.

The most comparable figures that we have seen are for the
Gambit implementation of Scheme. Compared to Gambit’s non-
generational collector, Gambit’s real-time collector hadmore over-
head on every benchmark [29]. From that, we conclude that
Larceny’s regional collector has better throughput than Gambit’s
real-time collector. On the other hand, the worst-case pause times
observed for Larceny’s regional collector are nowhere nearas short
as the 15 millisecond maximum observed for Gambit’s real-time
collector.

On the standard benchmarks, the regional collector’s longest
pause time was .24 seconds. For that benchmark, the generational
collector reported a pause of .72 seconds. Across all 68 bench-
marks, the generational collector’s longest pause was 1.88seconds.

8.2 GC-intensive synthetic benchmarks

To compare the near-worst-case performance of Larceny’s collec-
tors against collectors available for Java, we used four extraordinar-
ily gc-intensive synthetic benchmarks. All four benchmarks were
carefully written to provide fair comparisons between the two lan-
guages. (Among other things, this involved using Scheme vectors
with two elements when lists or pairs would be more idiomatic. In
Java, an object that encapsulates two reference fields is likely to
occupy 4 words of memory, as does a 2-element vector in Larceny,
but Larceny’s pairs occupy only 2 words each.)

gcbenchJ is a scalable version of the synthetic benchmark
originally written in Java by John Ellis, Pete Kovac, and Hans
Boehm. That original benchmark corresponds to1gcbenchJ:18 of
the scalable benchmark. We benchmarked5gcbenchJ:24, which

6http://www.larcenists.org/benchmarks2009.html



cpu time (sec) elapsed memory (MB) # of gc pauses pause time (sec)
language gc technology total mark+summ+gc time total heap total full avg full max
Scheme regional 726 121+34+287 757 1871 1775 158800 0 .12
Scheme generational 372 188 380 1867 1863 39756 276 3.13
Scheme stop&copy 419 233 428 1881 1877 711 711 .33 2.94
Java default 133 67 116 1751 541 20 1.13 3.02
Java parallel 131 65 114 1838 530 21 1.00 2.78
Java garbage-first 245 128 154 2147 1514 5 1.44 2.13
Java concurrent m/s 672 526 450 2144 6228 5 13.64 15.45

Figure 6. Timings and memory usage for the5gcbenchJ:24 benchmark.

cpu time (sec) elapsed memory (MB) # of gc pauses pause time (sec)
language gc technology total mark+summ+gc time total heap total full avg full max
Scheme regional 160 41+5+87 164 2272 2106 8239 0 .13
Scheme generational 73 54 74 1632 1628 2059 27 3.23
Scheme stop&copy 54 38 55 1633 1629 26 26 1.45 3.44
Java default 136 130 90 2097 71 22 2.21 3.07
Java parallel 131 125 82 2097 68 22 2.14 2.93
Java garbage-first 198 183 112 2334 726 5 4.19 4.68
Java concurrent m/s 221 141 148 2356 430 0 .50

Figure 7. Timings and memory usage for the400permJ:9:30:1 benchmark.

cpu time (sec) elapsed memory (MB) # of gc pauses pause time (sec)
language gc technology total mark+summ+gc time total heap total full avg full max
Scheme regional 186 63+1+102 191 1925 1826 15260 0 .09
Scheme generational 98 86 101 2044 2039 3815 47 4.28
Scheme stop&copy 85 72 88 2051 2047 48 48 1.49 4.62
Java default 239 233 180 1771 124 42 2.49 3.00
Java parallel 238 232 176 1771 124 42 2.49 3.24
Java garbage-first 345 334 205 1992 1049 12 4.27 4.29
Java concurrent m/s 456 270 326 1989 667 0 .45

Figure 8. Timings and memory usage for the1000queueJ:1000000:50 benchmark.

cpu time (sec) elapsed memory (MB) # of gc pauses pause time (sec)
language gc technology total mark+summ+gc time total heap total full avg full max
Scheme regional 320 97+48+156 326 1924 1829 15260 0 .21
Scheme generational 107 95 110 2044 2039 3815 47 4.45
Scheme stop&copy 90 76 92 2054 2049 48 48 1.58 4.74
Java default 254 248 189 1771 124 42 2.71 3.31
Java parallel 251 245 190 1771 124 42 2.73 3.32
Java garbage-first 445 432 254 1992 1151 12 5.32 5.84
Java concurrent m/s 444 275 318 1989 667 0 5.94

Figure 9. Timings and memory usage for the1000pueueJ:1000000:50:50 benchmark.
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performs 5 iterations scaled for a 2 gigabyte heap (the original 32
megabytes times224−18).

400permJ:9:30:1 consists of 400 iterations that each generate
a list (built out of 2-element vectors in Scheme) of all permutations
of 9 items, with much shared structure, without generating any
garbage, storing the results into a circular buffer of capacity 30;
garbage is created only when the oldest list in the buffer is replaced
by the most recent copy.

1000queueJ:1000000:50 allocates 1000 lists (built out of 2-
element vectors in Scheme), with one million elements per list,
storing them in a circular buffer that holds 50 lists.pueueJ is the
same asqueueJ except that every element of the lists is a popular
object. With1000pueueJ:1000000:50:50, there are 50 popular
objects, one for each list.

Figures 6 through 9 show the results. Larceny’s regional collec-
tor has the shortest maximum pause times, by far, mostly because
it’s the only collector that never performs a full collection.

The regional collector normally uses about as much memory as
Larceny’s generational collector, but it uses more memory on the
permJ benchmark.

Incremental and/or concurrent collection comes at a price:On
these extremely gc-intensive benchmarks, the regional collector de-
livers roughly half the throughput of Larceny’s generational col-
lector. Oracle’s garbage-first and concurrent mark/sweep collectors
also provide less throughput than the JVM’s default collector.

Oracle’s JVM outperforms Larceny ongcbenchJ because that
benchmark rewards large nurseries and fast write barriers.The
other three benchmarks penalize large nurseries. (Nurseries im-
prove average-case performance, but large nurseries just waste
space in the worst case because they don’t help with the long-lived
objects that dominate truly extreme benchmarks.) On those three
benchmarks, Larceny with its regional collector consumes less cpu
time than Java with the garbage-first or concurrent mark/sweep
collectors. If the regional collector’s marking and summarization
processes were executed in a separate thread, then the regional col-
lector’s total elapsed time for two of those benchmarks would be
better than the elapsed time for the garbage-first and concurrent
mark/sweep collectors, and its elapsed time for the third would be
comparable.

8.3 Observed MMU

As shown by Figures 3 and 10, the regional collector delivers
positive minimum mutator utilization at resolutions for which the
JVM collectors and Larceny’s other collectors have zero MMU.

The MMUs seen in Figures 3 and 10 are appallingly low, but
these graphs are for near-worst-case benchmarks. ForpueueJ, the
JVM’s default collector delivers anaveragemutator utilization of
only 2.5%. The minimum mutator utilization is always less than
the average, and the MMU observed over short intervals is usually
much less than the average. Larceny’s generational and stop&copy
collectors are able to achieve an MMU of 5% at 10 seconds for
pueueJ only because Larceny’s compiler generates machine code
that’s about twice as slow as the machine code generated by the
JVM.

The paraffins benchmark may be even more severe than
pueueJ. With the inverse load factor ofL = 2.5 that was used
to generate Figure 3, Larceny’s stop&copy collector delivers an
average mutator utilization of only 0.25%, while the generational
and regional collectors come in at about 4%.

The regional collector’s pause times and MMU are more pre-
dictable than the pause times and MMU of the other collectors.
With the other collectors, you can’t be sure they won’t perform a
full collection at some inopportune moment.

General-purpose garbage collectors have poor worst-case MMU.
Although the regional collector’s worst-case MMU is not as good

as we would like, it improves upon the worst-case MMU of previ-
ous collectors.

9. Related work
9.1 Generational garbage collection

Generational collection was introduced by Lieberman and Hewitt
[31]. A simplification of that design was first implemented byUn-
gar, who also introduced a nursery [41]. Most modern generational
collectors resemble Ungar’s, but our regional collector’sdesign is
more similar to that of Lieberman and Hewitt.

9.2 Heap partitioning

Our regional collector partitions the heap and collects theparts
independently.

Bishop’s collector allows single areas to be collected indepen-
dently; his work targets Lisp machines and requires hardware sup-
port [8].

The Garbage-Firstcollector inspired many aspects of our re-
gional collector [20]. Unlike the garbage-first collector,which uses
a points-into remembered set that could grow very large in a worst
case, we use a points-out-of remembered set with points-into sum-
maries that are bounded in size. The garbage-first collectormoves
popular objects; we do not. The garbage-first collector is not scal-
able in the sense defined by Sections 4 and 5: It does not offer
worst-case bounds on space usage, pause times, or MMU.

The Mature Object Space(a.k.a.Train) algorithm uses a fixed
policy for choosing which regions to collect [26]. To ensurecom-
pleteness, it migrates objects across regions until a complete cycle
is isolated to its own train and then collected. This gradualmigra-
tion can lead to significant problems with floating garbage. Our
marking process eliminates floating garbage in collected regions,
while our handling of popular regions provides an elegant and novel
solution that bounds the worst-case storage requirements.The Ma-
ture Object Space collector is not scalable.

TheBeltwaycollector uses heap partitioning and clever infras-
tructure to enable flexible selection of collection policies via com-
mand line options [9]. Its policy selection is expressive enough to
emulate the behavior of semi-space, generational, renewal-older-
first, and deferred-older-first collectors. Appropriate choices for
mutator-specific policy parameters improved performance by 5%,
10%, and up to 35% over a fixed generational collection policy.
The Beltway system forces users to choose between incremental or
complete collection, so the Beltway collector is not scalable.

TheMarkCopycollector breaks the heap down into fixed sized
windows[36]. During a collection pause, it builds up a remembered
set for each window and then collects each window in turn. An
extension interleaves the mutator process with individualwindow
copy collection; one could see our design as taking the next step of
moving the marking process and remembered set constructionoff
of the critical path of the collector.

The Parallel Incremental Compaction algorithm also has simi-
larities to our approach [7]. It selects an area of the heap tocollect,
and then concurrently builds a summary for that area. Its points-
into summary set is constructed by tracing the whole heap, rather
than by maintaining a points-out-of remembered set as in ourim-
plementation of the regional collector. (That technique would work
with the regional collector as well, and might be a welcome simpli-
fication. Klock evaluated that alternative in his dissertation [28].)
Their goals are also different from ours: Their technique adds in-
cremental compaction to a mark-sweep collector, while we provide
utilization and space guarantees in a copying collector.



9.3 Older-first garbage collection

Our regional collector, like older-first collectors, tendsto give ob-
jects more time to die before attempting to collect them [23,37].

9.4 Bounding collection pauses

There is a broad body of research on bounding the pause times
introduced by garbage collection [2, 5, 6, 11, 12, 24, 32, 42]. In
particular, Blelloch and Cheng proved worst-case bounds for pause
times and space usage (but not MMU) [10].

Bounding individual pause times is not enough; one must also
ensure that the mutator can accomplish a sufficient work between
the pauses, keeping the processor utilization as high as possible.
Cheng and Blelloch addressed this issue by inventing the MMU
metric [14]. Their paper presented anobservedMMU for a parallel
real-time collector, not a theoretical worst-case MMU.

9.5 Collection scheduling

Metronome is a hard real-time collector [4]. It can use either time-
or work-based collection scheduling, and is mostly non-moving,
but will copy objects to reduce fragmentation. Metronome also
requires a read barrier. Although the average overhead of the
read barrier is only 4%, mutator utilization is said to be limited
to about 50% [15]. More significantly, Metronome’s guaranteed
bounds on utilization and space usage depend upon the accuracy
of application-specific parameters. The original set of parameters
has been extended to provide tighter bounds on collection time and
space overhead [3]. Because its parameters depend upon the muta-
tor, Metronome is not scalable in the sense defined by Sections 4
and 5.

Similarly, Robertz and Henriksson described a collector that de-
pends on a supplied schedule to provide real-time collectorper-
formance [35]. Unlike Metronome, it schedules work according
to collection cycle times rather than finer grained quanta. Like
Metronome, it provides a proven bound on space usage (that de-
pends on the accurary of application-specific parameters).

In contrast to those designs, our regional collector is scalable:
It provides worst-case guarantees independent of mutator behavior.
On the other hand, our regional collector cannot guarantee pause
times or MMU in the millisecond range. Our regional collector is
mostly copying, has no read barrier, and uses work-based account-
ing to drive the collection policy.

9.6 Incremental and concurrent collection

There are many treatments of concurrent collectors, including an
algorithm described in 1978 [21].

The Continuously Concurrent Compacting Collector (C4) is a
generational form of The Pauseless GC Algorithm [15, 38]. Both
of those collectors have goals similar to ours, but attack the prob-
lem differently. Where we avoid read barriers entirely, those col-
lectors implement a read barrier in custom hardware or by replac-
ing Linux’s virtual memory system with a custom virtual memory
system that greatly reduces the cost of using stock memory pro-
tection hardware to trap reads from problematic locations.It is un-
clear whether those collectors are scalable in the sense defined by
Sections 4 and 5. Their observed pause times and MMU are im-
pressive, but no proofs have been published and no claims have
been made concerning their theoretical worst-case MMU or space
requirements.

In our collector, reclamation of dead object state is not per-
formed concurrently with the mutator, but the activity of the sum-
marization and marking processes could be.

Our summarization process was inspired by the performance
of Detlefs’ implementation of a concurrent thread that refines data
within the remembered set to reduce the effort spent towardsscan-
ning older objects for roots during a collection pause [19].

Interleaving the summarization and marking processes withthe
mutator requires a write barrier, which we piggy-back onto abarrier
that was already in place to support generational collection. This
is similar to how Printezis and Detlefs, building on the workof
Boehm et al., merged the overhead of maintaining concurrency
related invariants with the overhead of maintaining generational
invariants [11, 34].

10. Future work
As implemented in Larceny v0.98b1, the regional collector inter-
leaves the marking and summarization processes with the mutator.
Summarization is scheduled at the fine grain of Larceny’s software
timer interrupts, while marking is scheduled for minor collections
and the processing of write barrier logs. Both marking and summa-
rization could be done concurrently with the mutator, whichwould
improve throughput on programs that do not fully utilize allpro-
cessor cores.

The regional collector’s Cheney collections can themselves be
parallelized, but that is essentially independent of the design.

We assume object sizes are bounded, so every object will fit
into a region. Because we control both the compiler and the run-
time representations of objects, we can choose representations that
break extremely large objects into pieces of bounded size. We have
not yet done that, but expect it to be routine.

11. Conclusions
Regional garbage collection is scalable, with theoreticalworst-case
bounds for gc latency, MMU, and throughput that are independent
of mutator behavior and the volume of reachable storage.

Regional collection improves upon the worst-case pause times
and MMU seen in most other general-purpose collectors, including
the garbage-first and concurrent mark/sweep collectors. That im-
provement involves some sacrifice of throughput, but regional col-
lection still tends to deliver better throughput than Larceny’s non-
generational collector.
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